823 resultados para 172-1063D


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dansgaard-Oeschger (D-O) cycles in sediment at Site 1063 are characterized by distinct fluctuations in physical properties. Stadials are marked by low bulk density and interstadials by high bulk density. Compressional (P-)wave velocity is in phase with bulk density over some but not all depth intervals. Four of the D-O cycles straddling the oxygen isotope Stage 4/5 boundary have been studied in detail to understand the origin of the physical properties changes. Sediment on the Bermuda Rise is comprised of three main components: calcite, aluminosilicate minerals, and biogenic silica. Calcite concentrations vary from 1% to 43% of bulk sediment and are highest during interstadials. Aluminosilicate concentrations vary from 52% to 92% of bulk sediment and are highest during stadials. The major element ratios Al2O3/TiO2 and K2O/Al2O3 show increases across bulk density cycles, suggesting a change in the composition of aluminosilicates. This interpretation is supported by mineralogical analyses, which show a subtle change in clay composition. Biogenic silica concentrations vary from 0% to 23% of bulk sediment and are also highest during stadials. However, the abundance of silica varies significantly from one D-O cycle to another. Silt and fine sand abundance also increase during the first of the four stadials. This coarsening of sediment coincides with the increase in biogenic silica. The low grain density and high porosity associated with biogenic silica result in intervals of low bulk-sediment density. The abundance of biogenic silica closely matches P-wave velocity, suggesting that silica imparts a greater rigidity to the sediment.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ocean circulation may have undergone reductions and reinvigorations in the past closely tied to regional climate changes. Measurements of 231Pa/230Th ratios in a sediment core from the Bermuda Rise have been interpreted as evidence that the Atlantic Meridional Overturning Circulation (AMOC) was weakened or completely eliminated during a period of catastrophic iceberg discharges (Heinrich-Event 1, H1). Here we present new data from the Bermuda Rise that show further 231Pa/230Th peaks during Heinrich-2 (H2) and Heinrich-3 (H3). Additionally, a tight correlation between diatom abundances (biogenic silica) and 231Pa/230Th is discovered in this core. Our results redirect the interpretation of 231Pa/230Th from the Bermuda Rise as a proxy for ocean circulation towards a proxy that reacts highly sensitive to changes of particle composition and water mass properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The strength and geometry of the Atlantic meridional overturning circulation is tightly coupled to climate on glacial-interglacial and millennial timescales, but has proved difficult to reconstruct, particularly for the Last Glacial Maximum. Today, the return flow from the northern North Atlantic to lower latitudes associated with the Atlantic meridional overturning circulation reaches down to approximately 4,000 m. In contrast, during the Last Glacial Maximum this return flow is thought to have occurred primarily at shallower depths. Measurements of sedimentary 231Pa/230Th have been used to reconstruct the strength of circulation in the North Atlantic Ocean, but the effects of biogenic silica on 231Pa/230Th-based estimates remain controversial. Here we use measurements of 231Pa/230Th ratios and biogenic silica in Holocene-aged Atlantic sediments and simulations with a two-dimensional scavenging model to demonstrate that the geometry and strength of the Atlantic meridional overturning circulation are the primary controls of 231Pa/230Th ratios in modern Atlantic sediments. For the glacial maximum, a simulation of Atlantic overturning with a shallow, but vigorous circulation and bulk water transport at around 2,000 m depth best matched observed glacial Atlantic 231Pa/230Th values. We estimate that the transport of intermediate water during the Last Glacial Maximum was at least as strong as deep water transport today.