816 resultados para 160-963
Resumo:
Here we present a high-resolution faunal, floral and geochemical (stable isotopes and trace elements) record from the sediments of Ocean Drilling Program Site 963 (central Mediterranean basin), which shows centennial/millennial-scale resemblance to the high-northern latitude rapid temperature fluctuations documented in the Greenland ice cores between 20 and 70 kyr BP. Oxygen and carbon isotopes, planktic foraminifera and calcareous nannofossil distributions suggest that Dansgaard-Oeschger (D/O) and Heinrich events (HE) are distinctly expressed in the Mediterranean climate record. Moreover, recurrent though subdued oscillations not previously identified in the Lateglacial Mediterranean sediments document a significant centennial-scale climate variability in the basin that is greater than previously thought. Alternations between climate regimes dominated by polar outbreaks during D/O stadials and warm D/O interstadials, with associated intensification of continental runoff, are well expressed in the ODP Site 963. These place the Mediterranean basin as an often overlooked recorder of the interplay between large- and regional- scale climate controls at intermediate latitudes, and of the possible interactions between different components of the climate system. Significant changes in Ba/Ca values measured in Globigerinoides ruber shells from a number of D/O stadials and interstadials suggest enhanced freshwater input from the north-eastern Mediterranean borderland during the D/O interstadials. However, the short duration of 3D stratification events never led to complete oxygen consumption along the water column, but clear effects of sluggish 3D circulation in the basin are testified to by negative excursions in d13C measured in selected species of planktic and benthic foraminifera. HEs are constantly associated with lightening in the d18O record of planktic foraminifera, possibly because of the impact of iceberg melting in the Iberian Margin on Mediterranean thermohaline circulation. Interestingly, in two cases in particular, HE2 and HE5, fresher water inputs also affected deeper horizons of intermediate waters, suggesting a basin-wide impact.
Resumo:
Research on sediments recovered during Ocean Drilling Leg 160 has concentrated on two issues: the first concerned the stratigraphy of sapropel formation, the second was oriented to clarify specific processes that explain sapropel origin. Progress has been made in the construction of stratigraphic composites out of sedimentary sequences from individual holes at each of the palaeoceanographic sites. On the composites, initial work has resulted in the establishment of high-resolution and intermediate-resolution stratigraphies for three sites (963, 964, 967); correlation of sedimentary cycles to astronomical (insolation) cycles extends the stratigraphies to Sites 969 and 966. The sapropel occurrences in the marine and land sequences over the entire Eastern Mediterranean are correlated; with the resolution that can be obtained from isotope studies, groups of sapropels occurred simultaneously over the entire basin. In detail, however, the temporal and facies patterns of sapropel sequences differ between individual sites and depositional basins. The differences may be related to effects of water depth, diagenesis, and post-depositional tectonic attenuation of sequences. Studies on the geochemistry and facies of sapropels agree that anoxic conditions favoured preservation of organic matter in sapropels, caused the enrichment of trace metals associated with sapropels, and helped to preserve primary sedimentary structures. Besides, all evidence is consistent with elevated fluxes of organic matter and associated elements during sapropel events.
Resumo:
The development of widespread anoxic conditions in the deep oceans is evidenced by the accumulation and preservation of organic-carbon-rich sediments, but its precise cause remains controversial. The two most popular hypotheses involve (1) circulation-induced increased stratification resulting in reduced oxygenation of deep waters or (2) enhanced productivity in the surface ocean, increasing the raining down of organic matter and overwhelming the oxic remineralization potential of the deep ocean. In the periodic development of deep-water anoxia in the Pliocene-Pleistocene Mediterranean Sea, increased riverine runoff has been implicated both as a source for nutrients that fuel enhanced photic-zone productivity and a source of a less dense freshwater cap leading to reduced circulation, basin-wide stagnation, and deep-water oxygen starvation. Monsoon-driven increases in Nile River discharge and increased regional precipitation due to enhanced westerly activity-two mechanisms that represent fundamentally different climatic driving forces-have both been suggested as causes of the altered freshwater balance. Here we present data that confirm a distinctive neodymium (Nd) isotope signature for the Nile River relative to the Eastern Mediterranean-providing a new tracer of enhanced Nile outflow into the Mediterranean in the past. We further present Nd isotope data for planktonic foraminifera that suggest a clear increase in Nile discharge during the central intense period of two recent anoxic events. Our data also suggest, however, that other regional freshwater sources were more important at the beginning and end of the anoxic events. Taken at face value, the data appear to imply a temporal link between peaks in Nile discharge and enhanced westerly activity.