505 resultados para 145-883
Resumo:
Paleomagnetic data were measured from basaltic flows cored by the Ocean Drilling Program (ODP) at Site 883 on the summit of Detroit Seamount, located in the northernmost Emperor seamounts. These data are important because they reflect the paleolatitude of Hawaiian volcanism for the Late Cretaceous and bear upon geodynamic models of hotspot drift. A total of 143 samples were measured, from cores acquired at two ~20-30 m apart. Most samples gave apparently reliable magnetic directions that were analyzed in a tiered fashion to compute a composite inclination vs. depth curve. One hole gave 13 distinct inclination groups, the other 10, and the two were combined into nine groups thought to represent independent measurements of paleofield direction. These data indicate normal magnetic polarity and give a mean inclination of 61.5+10.6°/-6.4° and paleolatitude of 42.8+13.2°/-7.6° (95% confidence limits). This paleolatitude is 6.2° higher than results from another ODP site (884) drilled on the lower flank of the same seamount. The difference is thought to result partly from an age difference (1-3 Myr) and partly from incomplete averaging of paleosecular variation at both drill sites. Together, the data from the two sites reinforce the conclusion that the northern Emperor seamounts were formed far north of the present-day hotspot latitude (~19.5°N) and suggest prior estimates of the amount and rate of southward drift may have been low. This analysis also illustrates uncertainties in determining paleolatitude from a small number of lava flow units from a single drill site.
Resumo:
Mass accumulation rates (MAR) of different components of North Pacific deep-sea sediment provide detailed information about the timing of the onset of major Northern Hemisphere glaciation that occurred at 2.65 Ma. An increase in explosive volcanism in the Kamchatka-Kurile and Aleutian arcs occured at this same time, suggesting a link between volcanism and glaciation. Sediments recovered by piston-coring techniques during ODP Leg 145 provide a unique opportunity to undertake a detailed test of this possibility. Here we use volcanic glass as a proxy for explosive volcanism and ice-rafted debris (IRD) as a proxy for glaciation. The MAR of both glass and IRD increase markedly at 2.65 Ma. Further, the flux of the volcanic glass increased just prior the flix of ice-radted material, suggesting that the cooling resulting from explosive volcanic eruptions may have been the ultimate trigger for the mid-Pliocene glacial intensification.
Resumo:
Oxygen and carbon isotope records are important tools used to reconstruct past ocean and climate conditions, with those of benthic foraminifera providing information on the deep oceans. Reconstructions are complicated by interspecies isotopic offsets that result from microhabitat preferences (carbonate precipitation in isotopically distinct environments) and vital effects (species-specific metabolic variation in isotopic fractionation). We provide correction factors for early Cenozoic benthic foraminifera commonly used for isotopic measurements (Cibicidoides spp., Nuttallides truempyi, Oridorsalis spp., Stensioina beccariiformis, Hanzawaia ammophila, and Bulimina spp.), showing that most yield reliable isotopic proxies of environmental change. The statistical methods and larger data sets used in this study provide more robust correction factors than do previous studies. Interspecies isotopic offsets appear to have changed through the Cenozoic, either (1) as a result of evolutionary changes or (2) as an artifact of different statistical methods and data set sizes used to determine the offsets in different studies. Regardless of the reason, the assumption that isotopic offsets have remained constant through the Cenozoic has introduced an 1-2°C uncertainty into deep sea paleotemperature calculations. In addition, we compare multiple species isotopic data from a western North Atlantic section that includes the Paleocene-Eocene thermal maximum to determine the most reliable isotopic indicator for this event. We propose that Oridorsalis spp. was the most reliable deepwater isotopic recorder at this location because it was best able to withstand the harsh water conditions that existed at this time; it may be the best recorder at other locations and for other extreme events also.
Resumo:
Atmospheric carbon dioxide concentrations were significantly lower during glacial periods than during intervening interglacial periods, but the mechanisms responsible for this difference remain uncertain. Many recent explanations call on greater carbon storage in a poorly ventilated deep ocean during glacial periods (Trancois et al., 1997, doi:10.1038/40073; Toggweiler, 1999, doi:10.1029/1999PA900033; Stephens and Keeling, 2000, doi:10.1038/35004556; Marchitto et al., 2007, doi:10.1126/science.1138679; Sigman and Boyle, 2000, doi:10.1038/35038000), but direct evidence regarding the ventilation and respired carbon content of the glacial deep ocean is sparse and often equivocal (Broecker et al., 2004, doi:10.1126/science.1102293). Here we present sedimentary geochemical records from sites spanning the deep subarctic Pacific that -together with previously published results (Keigwin, 1998, doi:10.1029/98PA00874)- show that a poorly ventilated water mass containing a high concentration of respired carbon dioxide occupied the North Pacific abyss during the Last Glacial Maximum. Despite an inferred increase in deep Southern Ocean ventilation during the first step of the deglaciation (18,000-15,000 years ago) (Marchitto et al., 2007, doi:10.1126/science.1138679; Monnin et al., 2001, doi:10.1126/science.291.5501.112), we find no evidence for improved ventilation in the abyssal subarctic Pacific until a rapid transition ~14,600 years ago: this change was accompanied by an acceleration of export production from the surface waters above but only a small increase in atmospheric carbon dioxide concentration (Monnin et al., 2001, doi:10.1126/science.291.5501.112). We speculate that these changes were mechanistically linked to a roughly coeval increase in deep water formation in the North Atlantic (Robinson et al., 2005, doi:10.1126/science.1114832; Skinner nd Shackleton, 2004, doi:10.1029/2003PA000983; McManus et al., 2004, doi:10.1038/nature02494), which flushed respired carbon dioxide from northern abyssal waters, but also increased the supply of nutrients to the upper ocean, leading to greater carbon dioxide sequestration at mid-depths and stalling the rise of atmospheric carbon dioxide concentrations. Our findings are qualitatively consistent with hypotheses invoking a deglacial flushing of respired carbon dioxide from an isolated, deep ocean reservoir periods (Trancois et al., 1997, doi:10.1038/40073; Toggweiler, 1999, doi:10.1029/1999PA900033; Stephens and Keeling, 2000, doi:10.1038/35004556; Marchitto et al., 2007, doi:10.1126/science.1138679; Sigman and Boyle, 2000, doi:10.1038/35038000; Boyle, 1988, doi:10.1038/331055a0), but suggest that the reservoir may have been released in stages, as vigorous deep water ventilation switched between North Atlantic and Southern Ocean source regions.