504 resultados para 130-804
Resumo:
The Neogene carbonate stratigraphy of five sites drilled on Ontong Java Plateau during Leg 130 reveals a number of patterns which are unexpected, and which we refer to as loss paradox, equatorial insensitivity, and climate paradox. They denote the following unresolved questions. 1 The loss of carbonate at depth (as derived from differences in accumulation rates) is much greater than suggested by the change in carbonate percentages (calculated under the assumption that carbonate dissolution is the cause of loss). This indicates an important role for redeposition processes, such as winnowing (bottom currents), sifting (resuspension and catabatic flow) and episodic sloughing or solifluction (presumably stimulated by earthquakes). 2 Accumulation rates are not markedly increased at the time a site crosses the equator. There are several possible reasons. Equatorial upwelling may be unimportant in controlling sedimentation rates this far in the western Pacific, or its output may be spread over a considerable distance from the equator. Alternatively, increased supply below the equator is compensated for by increased removal (e.g. from resuspension by bioturbation, combined with catabatic flow). It is conceivable that errors in the timescale could also produce the effect seen. 3 There is an overall tendency for agreement between the stratigraphic patterns of carbonate content and of accumulation rates, but neither pattern is readily explained by reference to changes in climate (represented by benthic delta18O) or in sea-level (as derived from sequence stratigraphy).
Resumo:
Consolidation tests were performed on 19 samples of calcareous ooze from the Ontong Java Plateau, obtained during Ocean Drilling Program Leg 130. Rebound curves from consolidation tests on Ontong Java Plateau samples yield porosity rebounds of 1%-4% for these sediments at equivalent depths up to 1200 mbsf. The exception is a radiolarian-rich sample that has 6% rebound. A rebound correction derived from the porosity rebound vs. depth data has been combined with a correction for pore-water expansion to correct the shipboard laboratory porosity data to in-situ values. Comparison of the laboratory porosity data corrected in this manner with the downhole log data shows good agreement.
Resumo:
We investigated minor element ratios (Sr/Ca and Mg/Ca) in bulk sediment samples from Sites 803-807 using a recently optimized sample treatment protocol for calcium-carbonate-rich sediments consisting of sequential reductive and ion exchange treatments. We evaluated this protocol relative to bulk sediment leaching using samples from Sites 804 and 806, the two end-member sites in the depth transect, reporting as well Mn/Ca and Fe/Ca ratios for sediments from these two sites processed by means of both methods. The Sr/Ca ratios were only slightly affected by the sample treatment, with an average reduction of 6%-7% caused primarily by the ion exchange step. The reductive sample treatment, designed to be effective at removing Mn-rich oxyhydroxides, has a major effect on Mg/Ca ratios, with up to 50% reduction, whereas little effect occurred in ion exchange alone on Mg/Ca ratios. The Mn/Ca and Fe/Ca ratios were not consistently offset by the sample treatment, and these ratios do not appear to be representative of calcite geochemistry reflecting either ocean history or diagenetic overprinting. Celestite solubility appears to be an important control on interstitial water Sr concentrations in these sites, and it must be considered when constructing Sr mass balance models of calcite recrystallization. Calcite Sr/Ca ratios (range 1-2 mmol/mol) are similar from site to site when plotted vs. age, with a pattern comparable to that for well-preserved foraminifer tests over the past 40 Ma. Interstitial water Mg and Ca gradients appear to reflect basement character and the intensity of alteration; they can vary substantially over a small area. Calcite Mg/Ca ratios (range 1.5-4.5 mmol/mol) differ from site to site, with generally higher ratios for sites at a shallower water depth. Increasing calcite Mg/Ca ratios correlate with decreasing Sr/Ca ratios in the treated samples. No consistent pattern exists for calcite Mg/Ca ratios vs. age or depth, nor is any direct correlation to interstitial water Mg/Ca ratios present.
Resumo:
This dataset characterizes the evolution of western African precipitation indicated by marine sediment geochemical records in comparison to transient simulations using CCSM3 global climate model throughout the Last Interglacial (130-115 ka). It contains (1) defined tie-points (age models), newly published stable isotopes of benthic foraminifera and Al/Si log-ratios of eight marine sediment cores from the western African margin and (2) annual and seasonal rainfall anomalies (relative to pre-industrial values) for six characteristic latitudinal bands in western Africa simulated by CCSM3 (two transient simulations: one non-accelerated and one accelerated experiment).
Resumo:
The Neogene biostratigraphy presented here is based on the study of 230 samples through 737 m of pelagic sediment in Hole 806B. Sediment accumulation is interrupted only once in the uppermost lower Miocene (Zone N6), apparently coincident with a widespread deep-sea hiatus. Preservation of planktonic foraminifers through the section ranges from good to moderately poor. One hundred and ten species of planktonic foraminifers were identified; taxonomic notes on most species are included. All of the standard low-latitude Neogene foraminiferal zones are delineated, with the exceptions of Zones N8 and N9 because of a high first occurrence of Orbulina, and Zones N18 and N19 because of a high first occurrence of Sphaeroidinella dehiscens. Good agreement exists between the published account of the variation in planktonic foraminiferal species richness and the rates of diversification and turnover, and measurements of these evolutionary indexes in the record of Hole 806B. The global pattern of change in tropical/transitional species richness is paralleled in Hole 806B, with departures caused by either ecological conditions peculiar to the western equatorial Pacific or by inexactness in the estimation of million-year intervals in Hole 806B. Temporal changes in the relative abundance of taxa in the sediment assemblages, considered in light of their depth habitats, reveal a detailed picture of historical change in the structure of the upper water column over the Ontong Java Plateau. The dominance of surface dwellers (Paragloborotalia kugleri, P. mayeri, Dentoglobigerina altispira, Globigerinita glutinata, and Globigerinoides spp.) throughout the lower and middle Miocene is replaced by a more equitable distribution of surface (D. altispira and Globigerinoides spp.), intermediate (Globorotalia menardii plexus), and deep (Streptochilus spp.) dwellers in the late Miocene, following the closing of the Indo-Pacific Seaway and the initiation of large-scale glaciation in the Antarctic. The shoaling of the thermocline along the equator engendered by these climatic and tectonic events persisted through the Pliocene, when initial increases in the abundance of a new set of shallow, intermediate, and deep dwelling species of planktonic foraminifers coincide with the closing of the Panamanian Seaway.
Resumo:
We present the first continuous records from 0 to 5 Ma (in 0.333 m.y. integrated time steps) of paired boron/calcium (B/Ca) ratios and boron isotopes (d11B) in the planktonic foraminifera Globogerinoides sacculifer (without sacc) from a site in the western equatorial Pacific Ocean (Ocean Drilling Program Site 806). These measurements, the first made in conjunction with calcification temperature (magnesium/calcium ratios) and average shell mass measurements, indicate that pH is not the sole environmental variable controlling B in planktonic foraminiferal calcite. Our data are consistent with calcification temperature exerting a primary control on B concentration and isotopic composition in planktonic foraminifera. If so, calcification temperature must be taken into account if pH for past oceans and atmospheric pCO2 are to be estimated from B isotope measurements in foraminiferal calcite. Doing so will substantially increase the uncertainty of pH estimates. Although this work was designed as a temporal study, its results define new aspects of calibrating the d11B paleo-pH tracer.
Resumo:
This work reconstructs Late Quaternary paleoceanographic changes in the western South Atlantic Ocean based on sedimentary core GL-77, recovered from the lower continental slope in the Campos basin, offshore SE Brazil. The studied interval comprises the last 130 ka. Changes in sea surface temperature (SST) and paleoproductivity were estimated using the total planktonic foraminiferal fauna and oxygen isotope analyses. The age model was based on the oxygen isotope record, biostratigraphic datums and AMS 14C dating. It was observed that the Pleistocene/Holocene transition occurs within Globorotalia menardii Biozone Y, and is not coeval with the base of Biozone Z. The range between summer and winter SST estimates is larger during the glacial period compared to interglacials. Three peaks of low SST around 70, 50 - 45 and 20 ka coincided with periods of enhanced SE trade winds. Despite faunal differences between the last interglacial (MIS 5e) and the Holocene, our SST estimates suggest that SSTs did not differ significantly between these intervals.