484 resultados para 126-792
Resumo:
Chemical analyses were performed on major, minor, and rare-earth elements of pelagic and hemipelagic sediments of the forearc, arc, and backarc sites of the Izu-Bonin Arc, Ocean Drilling Program Leg 126. Analyses of the hemipelagic and pelagic sediments of this area indicate that the chemical composition of this arc is highly affected by the chemical composition of rocks of this arc as a source of sediments. The Oligocene sediments, which are characterized by high MgO contents, reflect the chemical composition of the Paleogene volcanic rocks of the immature arc. Moreover, the late Miocene to Quaternary sediments with low MgO contents are attributed to the composition of the present arc. We also suggest that the sedimentation rates and topography of the sedimentary basin affect the MnO and SiO2 contents of pelagic and hemipelagic sediments.
Resumo:
During Ocean Drilling Program Leg 126, six sites were cored in a young backarc rift basin and its flanks (rift onset 1.1-3.56 Ma) and in the forearc basin of the Izu-Bonin Arc. In the backarc area, strata are younger than about 4.5 Ma, whereas in the forearc, ages are about 0-31 Ma in sections punctuated by important Miocene unconformities. Bulk chemical analyses of volcaniclastic turbidite sands and sandstones, derived directly from the arc, were obtained from 271 atomic absorption analyses (major elements), 253 XRF analyses (trace elements) and 16 ICP-MS analyses (trace and rare-earth elements). Of the 271 samples, 78 come from the backarc area and the remainder from the forearc. The sands and sandstones reflect the igneous compositions of their sources. Most are formed of materials derived from subalkaline, low-K andesites, and dacites, although compositions range from basalt to rhyolite. Basic and acid andesites are predominant in Oligocene rocks; in contrast, Pliocene-Pleistocene sediments were derived from acid andesitic to rhyolitic sources. The oldest sandstones, estimated to have an age of about 31 Ma, were derived from an arc tholeiitic, not boninitic, source. The 26-31 Ma sandstones furthest to the north, at Sites 787 and 792, have higher relative concentrations of Ti, Zr, and Y than do those at southern Site 793. Data from younger samples indicate that, for more than 30 m.y., the average composition of volcaniclastic sediments and volcanism near Aoga Shima was more basic than to the south, near Sumisu Jima. Using the sandstones as igneous proxies, we conclude that magmas erupted along the arc have become more depleted in light-rare-earth elements (LREE) with time. There was a major change in rare-earth-element (REE) concentrations in the late Oligocene, from essentially flat patterns (normalized La/Yb about 1-1.5) to LREE-depleted patterns (normalized La/Yb about 0.5). At the same time, Zr/Y ratios decreased from about 2-4 to about 1.5-2.5. These changes may reflect a shift in provenance, or changes in the composition of the mantle wedge beneath the arc. In the backarc area, lithic clasts and glass shards of rift-facies basalt are present in sediments as old as 2.35-3.15 Ma. Two samples of mafic sand from the backarc basin have flat REE patterns (normalized La/Yb about 1.0), like some of the <1-Ma rift lavas and unlike pre-rift sand and sandstone samples. These possibly represent the local effects of sedimentary mixing of detritus from arc and backarc eruptions because no evidence from the arc itself exists to suggest a recent change in the REE content of magmas.
Resumo:
During Ocean Drilling Program Leg 126, we recovered three expanded Pleistocene sections from the active backarc rift (Sumisu Rift) and three expanded Oligocene-Miocene sections from the forearc basin of the Izu-Bonin volcanic island arc. Quantitative analysis of the Pleistocene nannofossils revealed five major assemblages between 0 and LO Ma: Assemblage 1 (Holocene-0.085 Ma) contains dominant Emiliania huxleyi; Assemblage 2 (ca. 0.085-0.275 Ma) contains dominant small Gephyrocapsa and common E. huxleyi and Gephyrocapsa oceanica; Assemblage 3 (ca. 0.275-0.6 Ma) contains dominant Gephyrocapsa caribbeanica; Assemblage 4 (ca. 0.6-0.9 Ma) contains a peak abundance of small Gephyrocapsa in the middle part, and dominant occurrences of two types of G. caribbeanica in the lower and upper parts; and Assemblage 5 (ca. 0.9-1.0 Ma) contains dominant small Gephyrocapsa and common G. caribbeanica and Reticulofenestra asanoi. These assemblages are largely synchronous with similar assemblages recognized from tropical and subtropical regions, and can be used for finer subdivision of the Pleistocene than that based on standard Pleistocene nannofossil datums. The Oligocene-Miocene sections contain several hiatuses: up to 3 m.y. may be missing from the uppermost Oligocene (Zone CP19) at Sites 792 and 793; all of Zone CN2 is missing at Sites 792 and 793; part of Zone CN3 and all of Zone CN4 are missing at Site 792. Biochronology of several nannofossil datums at Leg 126 sites indicate that Sphenolithus distentus, Sphenolithus ciperoensis, Cyclicargolithus floridanus, and Discoaster kugleri have diachronous occurrences compared with other sites in the western Pacific Ocean and Philippine Sea.
Resumo:
A paleomagnetic study was made on the deep-marine sediments and volcanic rocks drilled by Ocean Drilling Program Leg 126 in the Izu-Bonin forearc region (Sites 787, 792, and 793). This study evaluates the sense and amount of the tectonic drift and rotation associated with the evolution of the Philippine Sea Plate and the Izu-Bonin Arc. Alternating-field and thermal demagnetization experiments show that most of the samples have stable remanence and are suitable for paleomagnetic studies. Paleomagnetic declinations were recovered by two methods of core orientation, one of which uses a secondary viscous magnetization vector of each specimen as an orientation standard, and the other of which is based on the data of downhole microresistivity measurement obtained by using a formation microscanner. Oligocene to early Miocene samples show 10° to 14° shallower paleolatitudes than those of the present. Middle Miocene to early Oligocene samples show progressive clockwise deflections (up to ~80°) in declination with time. These results suggest large northward drift and clockwise rotation of the Izu-Bonin forearc region since early Oligocene time. Considering previous paleomagnetic results from the other regions in the Philippine Sea, this motion may reflect large clockwise rotation of the whole Philippine Sea Plate over the past 40 m.y.
Resumo:
Results of conventional K-Ar dating on five samples from two sites from the Izu-Bonin forearc are presented. Two samples recovered from a volcanic edifice and overlying sediments drilled on the western side of the forearc basin (Site 792) indicate a basement age of 34 Ma. This is consistent with early Oligocene biostratigraphic ages from the overlying sediments. Three samples from the basement of Hole 793B at the center of the basin are not analytically distinguishable, with a best age of 27.1 +/- 0.6 Ma. This is slightly younger than the 30-33 Ma biostratigraphic and magnetostratigraphic estimates from the overlying sediments, suggesting that alteration processes have lowered the apparent K-Ar ages. These ages suggest that syn-rift volcanism occurred in a forearc location during the middle Oligocene.