100 resultados para 1147
Resumo:
Sites 1147 (18°50.11'N, 116°33.28'E; water depth = 3246 m) and 1148 (18°50.17'N, 116°33.94'E; water depth = 3294 m) are located on the lowermost continental slope off southern China near the continent/ocean crust boundary of the South China Sea Basin. Site 1147 is located upslope ~0.45 nmi west of Site 1148. Three advanced piston corer holes at Site 1147 and two extended core barrel holes at Site 1148 were cored and combined into a composite (spliced) stratigraphic section, which provided a relatively continuous profile for the lower Oligocene to Holocene (Wang, Prell, Blum, et al., 2000, doi:10.2973/odp.proc.ir.184.2000; Jian, et al., 2001, doi:10.1007/BF02907088) for studying stratigraphy and paleoceanography. A total of 1047 planktonic foraminifers stable isotope measurements were performed on 975 samples covering the upper 409.58 meters composite depth (mcd) at ~42-cm intervals (Tables T1, T2), and a total of 1864 benthic foraminifers measurements were performed on 1650 samples in the upper 837.11 mcd at ~51-cm intervals (Tables T3, T4). We significantly improved the time resolution of the benthic stable isotope record in the upper 476.68 mcd by reducing the average sample spacing to ~29 cm. This translates into an average sampling resolution of ~16 k.y. for the Miocene sequence and ~8 k.y. for the Pliocene-Holocene interval, assuming a change in sedimentation rates from ~1.8 to ~3.5 cm/k.y., as suggested by shipboard stratigraphy. These data sets provide the basis for upcoming studies to establish an oxygen isotope stratigraphy and examine the Neogene evolution of deep and surface water signatures (temperature, salinity, and nutrients) in the South China Sea.
Resumo:
A 30 m.y. stable isotopic record of marine-deposited black carbon from regional terrestrial biomass burning from the northern South China Sea reveals photosynthetic pathway evolution for terrestrial ecosystems in the late Cenozoic. This record indicates that C3 plants negatively adjusted their isotopic discrimination and C4 plants appeared gradually as a component of land vegetation in East Asia since the early Miocene, a long time before sudden C4 expansion occurred during the late Miocene to the Pliocene. The changes in terrestrial ecosystems with time can be reasonably related to the evolution of East Asian monsoons, which are thought to have been induced by several intricate mechanisms during the late Cenozoic and could contribute significantly to the post-Miocene marine carbonate isotope decline.
Resumo:
A reconnaissance study of alkenone stratigraphy for the past 35 m.y. in the northern South China Sea (SCS) using sediments from Sites 1147 and 1148 of Ocean Drilling Program (ODP) Leg 184 has been completed. Alkenones were not detected in sediment samples older than ~31 Ma. However, C37:2 appeared in the sedimentary record between ~8 and 31 Ma and both C37:2 and C37:3 were present between 0 and 8 Ma. These changes in alkenone occurrences may signal a response to global-scale Neogene cooling as well as to monsoon intensification and sea level changes over time as a result of Himalayan uplift and the opening of the SCS. Alternatively, they may be related to an evolutionary record of the development of temperature control on alkenone production in coccolithophores. The Uk'37 index for 0-8 Ma produces sea-surface temperatures (SST) of 19°-26°C, which are in the range of previously determined glacial-interglacial values for the northern SCS. Before the late Pleistocene (~1.2 Ma), the SST range is between 23° and 26°C with less variation. This change in variability may signify the early stage of intensified winter monsoons where cold wind and waters from the north may not yet have had a significant effect on SST or it may be the evolutionary link between the early development of unsaturated alkenones in coccolithophores and modern temperature control of alkenone production. We believe a long-term alkenone record is useful for further understanding of global-scale neogene cooling, the development of the East Asian monsoon system, and the evolutionary development of temperature control on alkenone unsaturation. Our data indicate that a high-resolution Uk'37 record for at least the last ~8 Ma is feasible for the northern SCS.
Resumo:
Lipid compositions of sediments recovered during Ocean Drilling Program Leg 184 in the South China Sea have been identified and quantified. The identified lipids can be ascribed to terrigenous and marine sources. Terrigenous lipids are mainly C27, C29, C31 n-alkanes, C26, C28, C30 n-fatty acids, and n-alcohols, which were derived from leaf waxes of higher land plants and transported to the sea by airborne dust or fresh water. Marine lipids, mainly C37 and C38 alkenones, C30 diol, and C30 and C32 keto-ols, were from microalgae, notably haptophytes and eustigmatophytes. Elevated concentrations and accumulation rates of both terrigenous and marine lipids in the interval 202-245 meters composite depth (mcd) and 0-166 mcd were postulated to be related to the development of the East Asian monsoon at 6-8 Ma and enhanced variations of the developed East Asian monsoon after 3.2 Ma, respectively. The pronounced late Oligocene input of terrigenous lipids reflects the paleoenvironment of a newly opened, narrow basin, with restricted ocean waters and the proximity of continental runoff.