720 resultados para 101-631


Relevância:

100.00% 100.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leg 101 of the Ocean Drilling Program recovered a large volume of Neogene sediments from sites in the Straits of Florida, Little Bahama Bank, and Exuma Sound. In varying amounts, shallow-water, platform-derived carbonate debris is nearly ubiquitous. Reworked planktonic foraminifers are common, especially in the Pliocene-Pleistocene. At Site 626 in the Straits of Florida, a sequence of Holocene to upper Oligocene sediments was recovered. The greatest Neogene hiatus at this site spans the latest Miocene through Pliocene. Below this, several minor hiatuses are present in a generally conformable sequence. From the Little Bahama Bank transect (Sites 627, 628, and 630), a nearly complete composite Neogene section was sampled. At Site 627, a major unconformity separates lowermost Miocene sediments from middle to upper Eocene sediments. A second major unconformity occurs at Site 628. Here, middle Miocene sediments lie above uppermost Oligocene deposits. Sites 632, 633, and 631 in Exuma Sound all bottomed in a thick, lower Pliocene section. The mid-Pliocene is very thin at Sites 633 and 631, while it is better represented at Site 632. Major unconformities at Sites 627 and 628 appear to correlate with periods of elevated sea level, which suggests that carbonate platform shedding may be greatest during this part of the sea-level cycles. One of the salient features of the Bahamas is the lack of any systematic temporal distribution of hiatuses. Only a brief hiatus in the late Pliocene may be regional. It appears that local platform-shedding events were of equal or greater importance in developing the stratigraphy of the Bahamas than regional or eustatic events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concentrations of dissolved Ca2+, Sr2+, Mg2+, SO4[2-], and alkalinity were measured in pore waters squeezed from sediments taken from ODP Holes 626C and 626D in the Florida Straits; Holes 627A and 627B, 628A, and 630A and 630C north of Little Bahama Bank; Holes 631 A, 632A and 632B, and 633A in Exuma Sound; and Holes 634A and 635A and 635B in Northeast Providence Channel. These data are compared with the mineralogy and strontium content of the sediments from which the waters were squeezed. Contrasts in the geochemical profiles suggest that significantly different processes govern pore-water signatures at each group of sites. In Little Bahama Bank, strong positive Ca2+ gradients are correlated with weak negative Mg2+ profiles. These trends are analogous to those seen at DSDP sites where carbonate deposits immediately overlie mafic basement, but as the depth to basement may be in excess of 5000 m, we suggest that diffusion gradients are initiated by an underlying sedimentary unit. In contrast, Ca2+ and Mg2+ gradients in Exuma Sound are not developed to any appreciable extent over similar thicknesses of sediment. We suggest that the pore-water chemistry in these deposits is principally controlled by diagenetic reactions occurring within each sequence. The location and extent of carbonate diagenesis can be estimated from dissolved Sr2+ profiles. In Little Bahama Bank and Exuma Sound, Sr2+ concentrations reach a maximum value of between 700 and 1000 µmol/L. Although the depths at which these concentrations are achieved are different for the two areas, the corresponding age of the sediment at the dissolved Sr2+ maximum is similar. Consequently, the diffusive flux of Sr2+ and the calculated rates of recrystallization in the two areas are likewise of a similar magnitude. The rates of recrystallization we calculate are lower than those found in some DSDP pelagic sites. As the waters throughout most of the holes are saturated with respect to SrSO4, celestite precipitation may cause erroneously low Sr2+ production rates and, consequently, low calculated rates of recrystallization. We therefore encourage only the discriminate use of Sr2+ profiles in the quantification of diagenetic processes.