996 resultados para "Globigerina" aquiensis
Resumo:
Isotopic depth stratification and relative abundance studies of planktic foraminifera at ODP Site 738 reveal three major faunal turnovers during the latest Paleocene and early Eocene, reflecting the climatic and structural changes in the Antarctic surface ocean. Faunal Event 1 occurred near the Paleocene/Eocene boundary and is characterized by a faunal turnover in deep dwellers, decreased relative abundance in intermediate dwellers and increased relative abundance in surface dwellers. This event marks a temporary elimination of the vertical structure in the surface ocean over a period of more than 63,000 years that is apparently associated with the sudden shutdown of the "Antarctic Intermediate Water" production. The appearance of morozovellids before this event suggests that polar warming is the cause for the shutdown in the production of this water mass. At this time warm saline deep water may have formed at low latitudes. Faunal Event 2 occurred near the AP5a/AP5b Subzonal boundary and is characterized by a faunal turnover in deep dwellers with no apparent change in surface and intermediate dwellers. Increased individual size, wall-thickness and relative abundance in deep dwelling chiloguembelinids suggests the formation of a deep oxygen minima in the Antarctic Oceans during the maximum polar warming possibly as a result of upwelling of nutrient-rich deep water. Faunal Event 3 occurred in Subzone AP6 and is characterized by a faunal turnover in surface dwellers and a delayed diversification in deep dwellers. This event marks the onset of Antarctic cooling. A drastic decrease in the delta13C/delta18O values of the deep assemblage in Zone AP7 suggests an intensified thermocline and reduced upwelling following the polar cooling.
Resumo:
Oxygen- and carbon-isotope analyses have been performed on the Quaternary planktonic foraminifers of Sites 548 and 549 (DSDP Leg 80) to investigate major water mass changes that occurred in the northeastern Atlantic at different glacial-interglacial cycles and to compare them with the well-defined picture of 18,000 yr. ago. Oxygen-isotope stratigraphy also provides a chronological framework for the more important data on the fauna and flora. Although bioturbation and sedimentary gaps obliterate the climatic and stratigraphic record, general trends in the oceanographic history can be deduced from the isotopic data. Isotopic stratigraphy has tentatively been delineated down to isotopic Stage 16 at Site 548 and in Hole 549A. This stratigraphy fits well with that deduced from benthic foraminiferal d18O changes and with bioclimatic zonations based on foraminiferal associations at Site 549. Variations in the geographic extension and in the flux of the Gulf Stream subtropical waters are inferred from both d18O and d13C changes. Maximal fluxes occurred during the late Pliocene. Northward extension of subtropical waters increased through the various interglacial phases of the early Pleistocene and decreased through the late Pleistocene interglacial phases. Conversely, glacial maxima were more intense after Stage 16. Isotopic Stages 12 and 16 mark times of important change in water mass circulation. Oxygen- and carbon-isotope analyses have been performed on the Quaternary planktonic foraminifers of Sites 548 and 549 (DSDP Leg 80) to investigate major water mass changes that occurred in the northeastern Atlantic at different glacial-interglacial cycles and to compare them with the well-defined picture of 18,000 yr. ago. Oxygen-isotope stratigraphy also provides a chronological framework for the more important data on the fauna and flora. Although bioturbation and sedimentary gaps obliterate the climatic and stratigraphic record, general trends in the oceanographic history can be deduced from the isotopic data. Isotopic stratigraphy has tentatively been delineated down to isotopic Stage 16 at Site 548 and in Hole 549A. This stratigraphy fits well with that deduced from benthic foraminiferal d18O changes and with bioclimatic zonations based on foraminiferal associations at Site 549. Variations in the geographic extension and in the flux of the Gulf Stream subtropical waters are inferred from both d18O and d13C changes. Maximal fluxes occurred during the late Pliocene. Northward extension of subtropical waters increased through the various interglacial phases of the early Pleistocene and decreased through the late Pleistocene interglacial phases. Conversely, glacial maxima were more intense after Stage 16. Isotopic Stages 12 and 16 mark times of important change in water mass circulation.
Resumo:
We present Mg/Ca data for Globigerina bulloides from 10 core top sites in the southwest Pacific Ocean analyzed by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Mg/Ca values in G. bulloides correlate with observed ocean temperatures (7°C-19°C), and when combined with previously published data, an integrated Mg/Ca-temperature calibration for 7°C-31°C is derived where Mg/Ca (mmol/mol) = 0.955 * e**(0.068 * T) (r**2 = 0.95). Significant variability of Mg/Ca values (20%-30%) was found for the four visible chambers of G. bulloides, with the final chamber consistently recording the lowest Mg/Ca and is interpreted, in part, to reflect changes in the depth habitat with ontogeny. Incipient and variable dissolution of the thin and fragile final chamber, and outermost layer concomitantly added to all chambers, caused by different cleaning techniques prior to solution-based ICPMS analyses, may explain the minor differences in previously published Mg/Ca-temperature calibrations for this species. If the lower Mg/Ca of the final chamber reflects changes in depth habitat, then LA-ICPMS of the penultimate (or older) chambers will most sensitively record past changes in near-surface ocean temperatures. Mean size-normalized G. bulloides test weights correlate negatively with ocean temperature (T = 31.8 * e**(-30.5*wtN); r**2 = 0.90), suggesting that in the southwest Pacific Ocean, temperature is a prominent control on shell weight in addition to carbonate ion levels.
Resumo:
We report on the spatial distribution of isotopic compositions of the two planktic foraminifera species Globigerina bulloides and Neogloboquadrina pachyderma (dex.), and the faunal assemblages of planktic foraminifera in 91 surface sediment samples along the Chilean continental slope between 23°S and 44°S. Both d13C and d18O data of N. pachyderma (dex.) show little variability in the study area. North of 39°S, the isotopic values of N. pachyderma (dex.) are heavier than those of G. bulloides, whereas south of 39°S, this relation inverses. This is indicative for a change from a well-mixed, deep thermocline caused by coastal upwelling north of 39°S to well-stratified water masses in a non-upwelling environment south of 39°S. In addition, the faunal composition of planktic foraminifera marks this change by transition from an upwelling assemblage north of 39°S to a high-nutrient-non-upwelling assemblage south of 39°S, which is characterized by decreased contributions of upwelling indicators such as G. bulloides, N. pachyderma (sin.), and Globigerinita glutinata. In general, we can conclude that food and light rather than temperature are the primary control of the planktic foraminiferal assemblage between 23°S and 44°S off Chile. Our data point to higher marine productivity at upwelling centers north of 25°S and at 30-33°S. South of 39°S, significant supply of nutrients by fluvial input most likely boosts the productivity.
Resumo:
iven the importance of high-latitude areas in the ocean-climate system, there is need for a paleothermometer that is reliable at low temperatures. Here we assess the applicability of the Mg/Ca-temperature proxy in colder waters (5-10?°C) by comparing for the first time the seasonal Mg/Ca and d18O cycles of N. pachyderma (s) and G. bulloides using a sediment trap time-series from the northern North Atlantic. While both species show indistinguishable seasonal d18O patterns that clearly track the near surface temperature cycle, their Mg/Ca are very different. G. bulloides Mg/Ca is high (2.0-3.1 mmol/mol), but varies in concert with the seasonal temperature cycle. The Mg/Ca of N. pachyderma (s), on the other hand, is low (1.1-1.5 mmol/mol) and shows only a very weak seasonal cycle. The d18O patterns indicate that both species calcify in the same depth zone. Consequently, depth habitat differences cannot explain the contrasting Mg/Ca patterns. The elevated Mg/Ca in pristine G. bulloides might be due to the presence of high Mg phases that are not preserved in fossil shells. The contrasting absence of a seasonal trend in the Mg/Ca of N. pachyderma (s) confirms other studies where calcification temperatures were less well constrained. The reason for this absence is not fully known, but may include species-specific vital effects. The very different seasonal patterns of both species' Mg/Ca underscore the importance of parameters other than temperature in controlling planktonic foraminiferal Mg/Ca. Our results therefore lend further caution in the interpretation of Mg/Ca-temperature reconstructions from high northern latitudes.
Resumo:
The late Eocene through earliest Miocene stable-isotope composition of southwest Pacific microfossils has been examined in a traverse of high-quality sedimentary sequences ranging from subantarctic (DSDP Site 277) through temperate regions (DSDP Sites 592 and 593). Changes in oxygen-isotope values, measured in benthic and planktonic foraminifers, document the Oligocene development and strengthening of latitudinal thermal zonation from water masses with broad temperature gradients during the Eocene to the steeper gradients and more distinct latitudinally distributed surface water-mass belts of the Neogene. The oxygen-isotope records can be divided into three intervals: late Eocene, early Oligocene, and middle to late Oligocene. Each interval represents a successive stage in the evolution of latitudinal thermal gradients between subantarctic and temperate regions in the Southern Hemisphere. During the late Eocene, oxygen-isotope values at subantarctic Site 277 were similar to those at temperate Sites 592 and 593. The isotope values suggest that, although the inferred paleotemperatures at Site 277 are slightly cooler on average than those at the temperate sites, there is no evidence for a major thermal boundary between the regions at this time. All three sites record the well-known oxygen-isotope enrichment of about 1 per mil in both planktonic and benthic foraminifers in close association with the Eocene/Oligocene boundary. In contrast to the earliest Oligocene enrichments in the planktonic and benthic oxygen-isotope composition at Site 277, more northern Sites 592 and 593 exhibit a depletion through the early-middle Oligocene. This documents the beginning of thermal segregation as subantarctic waters cooled relative to those at temperate latitudes. During the Oligocene, this surface-water differentiation continued, as measured by planktonic d18O values. The oxygen-isotope records of the benthic foraminifers also began to diverge in the earliest Oligocene. The most enriched oxygen-isotope values in all records cluster in the middle Oligocene, marked by oscillating episodes of enrichments >0.5 per mil occurring most prominently in the subantarctic record of Site 277. These values can be interpreted as recording either the coldest oceanic temperatures of the Paleogene and/or accumulations of Antarctic ice. After this interval, latitudinal thermal differentiation developed rapidly during the middle Oligocene, especially in the surface waters which actually warmed in temperate areas. If the enriched Oligocene oxygen-isotope values indicate that ice had accumulated, this ice must have disappeared by the early Miocene, when depleted oxygen-isotope values suggest very warm conditions. The data presented in this chapter document the progressive increase of latitudinal temperature gradients from the late Eocene through the late Oligocene. This pattern of increasing isotopic offset between latitudinally distributed southwest Pacific sites is linked to the establishment and strengthening of the Circum-Antarctic Current, previously considered to have developed during the middle to late Oligocene. The intensification of this current system progressively decoupled the warm subtropical gyres from cool polar circulation, in turn leading to increased Antarctic glaciation.