2 resultados para water masses
em DigitalCommons - The University of Maine Research
Resumo:
The concentration ratios of strontium to calcium in laboratory-reared larval cod otoliths are shown to be related to the water temperature (T) at the time of otolith precipitation. This relationship is curvilinear, and is best described by a simple exponential equation of the form (Sr/Ca x 1000 = a exp(-T/b). We show that when Sr/Ca elemental analyses are related to the daily growth increments in the larval otoliths, relative temperature histories of individual field-caught larvae can be reconstructed from the egg stage to the time of capture. We present preliminary examples of how such reconstructed temperature histories of Atlantic cod Gadus morhua larvae, collected on Georges Bank during April and May 1993, may be interpreted in relation to the broad-scale larval distributions and the hydrography of the Bank.
Resumo:
Over 30 years of hydrographic data from the northern Chile (18 degreesS-24 degreesS) upwelling region are used to calculate the surface and subsurface seasonal climatology extending 400 km offshore. The data are interpolated to a grid with sufficient spatial resolution to preserve cross-shelf gradients and then presented as means within four seasons: austral winter (July-September), spring (October-December), summer (January-March), and fall (April-June). Climatological monthly wind forcing, surface temperature, and sea level from three coastal stations indicate equatorward (upwelling favorable) winds throughout the year, weakest in the north. Seasonal maximum alongshore wind stress is in late spring and summer (December-March). Major water masses of the region are identified in climatological T-S plots and their sources and implied circulation discussed. Surface fields and vertical transects of temperature and salinity confirm that upwelling occurs year-round, strongest in summer and weakest in winter, bringing relatively fresh water to the surface nearshore. Surface geostrophic flow nearshore is equatorward throughout the year. During summer, an anticyclonic circulation feature in the north which extends to at least 200 m depth is evident in geopotential anomaly and in both temperature and geopotential variance fields. Subsurface fields indicate generally poleward flow throughout the year, strongest in an undercurrent near the coast. This undercurrent is strongest in summer and most persistent and organized in the south (south of 21 degreesS), A subsurface oxygen minimum, centered at similar to 250 m, is strongest at lower latitudes. Low-salinity subsurface water intrudes into the study area near 100 m, predominantly in offshore regions, strongest during summer and fall and in the southernmost portion of the region. The climatological fields are compared to features off Baja within the somewhat analogous California Current and to measurements from higher latitudes within the Chile-Peru Current system.