4 resultados para the rite of spring

em DigitalCommons - The University of Maine Research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The North Atlantic spring bloom is one of the main events that lead to carbon export to the deep ocean and drive oceanic uptake of CO(2) from the atmosphere. Here we use a suite of physical, bio-optical and chemical measurements made during the 2008 spring bloom to optimize and compare three different models of biological carbon export. The observations are from a Lagrangian float that operated south of Iceland from early April to late June, and were calibrated with ship-based measurements. The simplest model is representative of typical NPZD models used for the North Atlantic, while the most complex model explicitly includes diatoms and the formation of fast sinking diatom aggregates and cysts under silicate limitation. We carried out a variational optimization and error analysis for the biological parameters of all three models, and compared their ability to replicate the observations. The observations were sufficient to constrain most phytoplankton-related model parameters to accuracies of better than 15 %. However, the lack of zooplankton observations leads to large uncertainties in model parameters for grazing. The simulated vertical carbon flux at 100 m depth is similar between models and agrees well with available observations, but at 600 m the simulated flux is larger by a factor of 2.5 to 4.5 for the model with diatom aggregation. While none of the models can be formally rejected based on their misfit with the available observations, the model that includes export by diatom aggregation has a statistically significant better fit to the observations and more accurately represents the mechanisms and timing of carbon export based on observations not included in the optimization. Thus models that accurately simulate the upper 100 m do not necessarily accurately simulate export to deeper depths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abundance of the Ommastrephes bartramii winter-spring cohort fluctuated greatly from 1995 to 2004. To understand how abundance was influenced by sea surface conditions, we examined the variations in the proportion of thermal habitats with favourable sea surface temperature (SST). The SST data of both the spawning and feeding grounds were used to calculate the monthly proportion of favourable-SST areas (PFSSTA). Catch per fishing day per fishing boat (catch per unit effort, CPUE) of the Chinese mainland squid-jigging fleet was used as squid abundance index. The relationships between CPUE and monthly PFSSTA at spawning and feeding grounds were analyzed, and the relationship between CPUE and selected PFSSTA was quantified with a multiple linear regression model. Results showed that February PFSSTA at the spawning ground and August to November PFSSTA at the feeding ground could account for about 60% of the variability in O. bartramii abundance between 1995 and 2004, that February was the most important period influencing squid recruitment during the spawning season, and that feeding ground PFSSTA during the fishing season would influence CPUE by causing squid to aggregate. Our forecast model was found to perform well when we compared the model-predicted CPUEs and the average CPUEs observed during August to November in 2005 and 2006 from the Chinese squid-jigging fishery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean observing systems and satellites routinely collect a wealth of information on physical conditions in the ocean. With few exceptions, such as chlorophyll concentrations, information on biological properties is harder to measure autonomously. Here, we present a system to produce estimates of the distribution and abundance of the copepod Calanus finmarchicus in the Gulf of Maine. Our system uses satellite-based measurements of sea surface temperature and chlorophyll concentration to determine the developmental and reproductive rates of C. finmarchicus. The rate information then drives a population dynamics model of C. finmarchicus that is embedded in a 2-dimensional circulation field. The first generation of this system produces realistic information on interannual variability in C. finmarchicus distribution and abundance during the winter and spring. The model can also be used to identify key drivers of interannual variability in C. finmarchicus. Experiments with the model suggest that changes in initial conditions are overwhelmed by variability in growth rates after approximately 50 d. Temperature has the largest effect on growth rate. Elevated chlorophyll during the late winter can lead to increased C. finmarchicus abundance during the spring, but the effect of variations in chlorophyll concentrations is secondary to the other inputs. Our system could be used to provide real-time estimates or even forecasts of C. finmarchicus distribution. These estimates could then be used to support management of copepod predators such as herring and right whales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dimethylsulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP), in both particulate and dissolved forms, were surveyed during the early spring (March and April) and summer (July) of 1991 in coastal and offshore waters of the Gulf of Maine, USA, along with the hydrography, inorganic nutrients, phytoplankton chlorophyll, and phytoplankton taxonomic composition and abundance. Concentrations as high as 15 nM DMS (in April and July), 208 nM particulate DMSP (in April), and 101 nM dissolved DMSP (in July) were recorded. Total DMSP (dissolved plus particulate) reached 293 nM in a patch of the dinoflagellate Katodinium sp. in April. This is the first report of high DMSP concentrations in temperate waters in early spring associated with any organism other than the prymnesiophyte Phaeocystis pouchetii. There were no correlations between phytoplankton biomass, as measured by chlorophyll a, and DMS, and there were only slight correlations between chlorophyll a and DMSP in either dissolved or particulate form. As previously demonstrated by others, concentrations of intracellular (particulate) DMSP were related more to the presence of specific phytoplankton species rather than to overall phytoplankton biomass. The occurrence of high DMSP and DMS levels in early spring, comparable with or higher than those seen in summer maxima, at a time when bacterial activity is minimal and wind speeds are typically high may result in enhanced air-sea-fluxes of DMS.