2 resultados para stable isotopic
em DigitalCommons - The University of Maine Research
Resumo:
Stable-water-isotope data (deltaD and delta(18)O) from three groups of samples (fresh-snow and snow-pit samples collected on Qomolangma (Mount Everest) and Xixabangma during field seasons 1997,1998 and 2001, and precipitation samples collected at Tingri station during summer 2000) are presented and used to survey the isotopic composition of precipitation over the northern slope of the central Himalaya. Multi-year snow-pit samples on Qomolangma have a local meteoric water-line (slope = 8) close to the global value. Deuterium excess (d = deltaD - 8delta(18)O) values at Tingri are much lower than those in fresh snow from Qomolangma, probably due to differences in moisture source and air-mass trajectories as well as local weather conditions. There is no obvious seasonal trend for d values in the Qomolangma region. A negative relationship exists between delta(18)O and d values in both fresh snow on Qomolangma and precipitation at Tingri. Fresh-snow samples collected from different altitudes on Xixabangma allow us to investigate the altitude effect on delta(18)O values in snow. Of four storm events, only one has an obvious altitude effect on delta(18)O variation and a very low gradient of -0.1% per 100 in elevation.
Resumo:
In the summers of 2001 and 2002, glacio-climatological research was performed at 4110-4120 m a.s.l. on the Belukha snow/firn plateau, Siberian Altai. Hundreds of samples from snow pits and a 21 m snow/firn core were collected to establish the annual/seasonal/monthly depth-accumulation scale, based on stable-isotope records, stratigraphic analyses and meteorological and synoptic data. The fluctuations of water stable-isotope records show well-preserved seasonal variations. The delta(18)O and delta D relationships in precipitation, snow pits and the snow/firn core have the same slope to the covariance as that of the global meteoric water line. The origins of precipitation nourishing the Belukha plateau were determined based on clustering analysis of delta(18)O and d-excess records and examination of synoptic atmospheric patterns. Calibration and validation of the developed clusters occurred at event and monthly timescales with about 15% uncertainty. Two distinct moisture sources were shown: oceanic sources with d-excess < 12 parts per thousand, and the Aral-Caspian closed drainage basin sources with d-excess > 12 parts per thousand. Two-thirds of the annual accumulation was from oceanic precipitation, of which more than half had isotopic ratios corresponding to moisture evaporated over the Atlantic Ocean. Precipitation from the Arctic/Pacific Ocean had the lowest deuterium excess, contributing one-tenth to annual accumulation.