2 resultados para shallow lake sediment

em DigitalCommons - The University of Maine Research


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrology has been suggested as the mechanism controlling vegetation and related surficial pore-water chemistry in large peatlands. Peatland hydrology influences the carbon dynamics within these large carbon reservoirs and will influence their response to global warming. A geophysical survey was completed in Caribou Bog, a large peatland in Maine, to evaluate peatland stratigraphy and hydrology. Geophysical measurements were integrated with direct measurements of peat stratigraphy from probing, fluid chemistry, and vegetation patterns in the peatland. Consistent with previous field studies, ground-penetrating radar (GPR) was an excellent method for delineating peatland stratigraphy. Prominent reflectors from the peat-lake sediment and lake sediment-mineral soil contacts were precisely recorded up to 8 m deep. Two-dimensional resistivity and induced polarization imaging were used to investigate stratigraphy beneath the mineral soil, beyond the range of GPR. We observe that the peat is chargeable, and that IP imaging is an alternative method for defining peat thickness. The chargeability of peat is attributed to the high surface-charge density on partially decomposed organic matter. The electrical conductivity imaging resolved glaciomarine sediment thickness (a confining layer) and its variability across the basin. Comparison of the bulk conductivity images with peatland vegetation revealed a correlation between confining layer thickness and dominant vegetation type, suggesting that stratigraphy exerts a control on hydrogeology and vegetation distribution within this peatland. Terrain conductivity measured with a Geonics EM31 meter correlated with confining glaciomarine sediment thickness and was an effective method for estimating variability in glaciomarine sediment thickness over approximately 18 km(2). Our understanding of the hydrogeology, stratigraphy, and controls on vegetation growth in this peatland was much enhanced from the geophysical study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lake Malawi boasts the highest diversity of freshwater fishes in the world. Nearshore sites are categorized according to their bottom substrate, rock or sand, and these habitats host divergent assemblages of cichlid fishes. Sexual selection driven by mate choice in cichlids led to spectacular diversification in male nuptial coloration. This suggests that the spectral radiance contrast of fish, the main determinant of visibility under water, plays a crucial role in cichlid visual communication. This study provides the first detailed description of underwater irradiance, radiance and beam attenuation at selected sites representing two major habitats in Lake Malawi. These quantities are essential for estimating radiance contrast and, thus, the constraints imposed on fish body coloration. Irradiance spectra in the sand habitat were shifted to longer wavelengths compared with those in the rock habitat. Beam attenuation in the sand habitat was higher than in the rock habitat. The effects of water depth, bottom depth and proximity to the lake bottom on radiometric quantities are discussed. The radiance contrast of targets exhibiting diffused and spectrally uniform reflectance depended on habitat type in deep water but not in shallow water. In deep water, radiance contrast of such targets was maximal at long wavelengths in the sand habitat and at short wavelengths in the rock habitat. Thus, to achieve conspicuousness, color patterns of rock-and sand-dwelling cichlids would be restricted to short and long wavelengths, respectively. This study provides a useful platform for the examination of cichlid visual communication.