2 resultados para reconstruction of the anophthalmic cavity

em DigitalCommons - The University of Maine Research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are different views about the amount and timing of surface uplift in the Transantarctic Mountains and the geophysical mechanisms involved. Our new interpretation of the landscape evolution and tectonic history of the Dry Valleys area of the Transantarctic Mountains is based on geomorphic mapping of an area of 10,000 km(2). The landforms are dated mainly by their association with volcanic ashes and glaciomarine deposits and this permits a reconstruction of the stages and timing of landscape evolution. Following a lowering of base level about 55 m.y. ago, there was a phase of rapid denudation associated with planation and escarpment retreat, probably under semiarid conditions. Eventually, downcutting by rivers, aided in places by glaciers, graded valleys to near present sea level. The main valleys were flooded by the sea in the Miocene during a phase of subsidence before experiencing a final stage of modest upwarping near the coast. There has been remarkably little landform change under the stable, cold, polar conditions of the last 15 m.y. It is difficult to explain the Sirius Group deposits, which occur at high elevations in the area, if they are Pliocene in age. Overall, denudation may have removed a wedge of rock with a thickness of over 4 km at the coast declining to 1 km at a point 75 km inland, which is in good agreement with the results of existing apatite fission track analyses. It is suggested that denudation reflects the differences in base level caused by high elevation at the time of extension due to underplating and the subsequent role of thermal uplift and flexural isostasy. Most crustal uplift (2-4 km) is inferred to have occurred in the early Cenozoic with 400 m of subsidence in the Miocene followed by 300 m of uplift in the Pliocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ships’ protests have been used for centuries as legal documents to record and detail damages and indemnify Captains from fault. We use them in this article, along with data extracted through forensic synoptic analysis (McNally, 1994, 2004) to identify a tropical or subtropical system in the North Atlantic Ocean in 1785. They are shown to be viable sources of meteorological information. By comparing a damaging storm in New England in 1996, which included an offshore tropical system, with one reconstructed in 1785, we demonstrate that the tropical system identified in a ship’s protest played a significant role in the 1785 storm. With both forensic reconstruction and anecdotal evidence, we are able to assess that these storms are remarkably identical. The recurrence rate calculated in previous studies of the 1996 storm is 400–500 years. We suggest that reconstruction of additional years in the 1700s would provide the basis for a reanalysis of recurrence rates, with implications for future insurance and reinsurance rates. The application of the methodology to this new data source can also be used for extension of the hurricane database in the North Atlantic basin, and elsewhere, much further back into history than is currently available.