2 resultados para ransformations in production and cultivated area.

em DigitalCommons - The University of Maine Research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A set of high resolution surface ground penetrating radar (GPR) surveys, combined with elevation rod ( to monitor surface deformation) and gas flux measurements, were used to investigate in situ biogenic gas dynamics within a northern peatland (Caribou Bog, Maine). Gas production rates were directly estimated from the time series of GPR measurements. Spatial variability in gas production was also investigated by comparing two sites with different geological and ecological attributes, showing differences and/or similarities depending on season. One site characterized by thick highly humified peat deposits (5-6 m), wooded heath vegetation and open pools showed large ebullition events during the summer season, with estimated emissions (based on an assumed range of CH(4) concentration) between 100 and 172 g CH(4) m(-2) during a single event. The other site characterized by thinner less humified peat deposits (2-3 m) and shrub vegetation showed much smaller ebullition events during the same season (between 13 and 23 g CH(4) m(-2)). A consistent period of free-phase gas (FPG) accumulation during the fall and winter, enhanced by the frozen surficial peat acting as a confining layer, was followed by a decrease in FPG after the snow/ice melt that released estimated fluxes between 100 and 200 g CH(4) m(-2) from both sites. Estimated FPG production rates during periods of biogenic gas accumulation ranged between 0.22 and 2.00 g CH(4) m(3) d(-1) and reflected strong seasonal and spatial variability associated with differences in temperature, peat soil properties, and/or depositional attributes (e. g., stratigraphy). Periods of decreased atmospheric pressure coincided with short-period increases in biogenic gas flux, including a very rapid decrease in FPG content associated with an ebullition event that released an estimated 39 and 67 g CH(4) m(-2) in less than 3.5 hours. These results provide insights into the spatial and seasonal variability in production and emission of biogenic gases from northern peatlands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined high-resolution cross-shelf distributions of particulate organic carbon (POC) and dissolved O(2) during the upwelling season off the Oregon coast. Oxygen concentrations were supersaturated in surface waters, and hypoxic in near-bottom waters, with greatly expanded hypoxic conditions late in the season. Simplified time-dependent mass balances on cross-shelf integrated concentrations of these two parameters, found the following: ( 1) The average net rate of photosynthesis generated 2.1 mmol O(2) m(-3) d(-1) and ( 2) essentially none of the corresponding net carbon fixation of 1.4 mmol m(-3) d(-1) could be accounted for in the observed standing stocks of POC. After examining other possible sinks for carbon, we conclude that most of the net production is being exported to the adjacent deep ocean. A simplified POC budget suggests that about a quarter of the export is via alongshore advection, and the remainder is due to some other process. We propose a simplistic conceptual model of across-shelf transport in which POC sinks to the bottom boundary layer where it comes into contact with mineral ballast material but is kept in suspension by high turbulence. When upwelling conditions ease, the BBL waters move seaward, carrying the suspended, ballasted POC with it where it sinks rapidly into the deep ocean at the shelf break. This suggests a mechanism whereby the duration and frequency of upwelling events and relaxations can determine the extent to which new carbon produced by photosynthesis in the coastal ocean is exported to depth rather than being respired on the shelf.