4 resultados para pairwise constraints
em DigitalCommons - The University of Maine Research
Resumo:
Unroofing of the Black Mountains, Death Valley, California, has resulted in the exposure of 1.7 Ga crystalline basement, late Precambrian amphibolite facies metasedimentary rocks, and a Tertiary magmatic complex. The Ar-40/Ar-39 cooling ages, obtained from samples collected across the entire length of the range (>55 km), combined with geobarometric results from synextensional intrusions, provide time-depth constraints on the Miocene intrusive history and extensional unroofing of the Black Mountains. Data from the southeastern Black Mountains and adjacent Greenwater Range suggest unroofing from shallow depths between 9 and 10 Ma. To the northwest in the crystalline core of the range, biotite plateau ages from approximately 13 to 6.8 Ma from rocks making up the Death Valley turtlebacks indicate a midcrustal residence (with temperatures >300-degrees-C) prior to extensional unroofing. Biotite Ar-40/Ar-39 ages from both Precambrian basement and Tertiary plutons reveal a diachronous cooling pattern of decreasing ages toward the northwest, subparallel to the regional extension direction. Diachronous cooling was accompanied by dike intrusion which also decreases in age toward the northwest. The cooling age pattern and geobarometric constraints in crystalline rocks of the Black Mountains suggest denudation of 10-15 km along a northwest directed detachment system, consistent with regional reconstructions of Tertiary extension and with unroofing of a northwest deepening crustal section. Mica cooling ages that deviate from the northwest younging trend are consistent with northwestward transport of rocks initially at shallower crustal levels onto deeper levels along splays of the detachment. The well-known Amargosa chaos and perhaps the Badwater turtleback are examples of this "splaying" process. Considering the current distance of the structurally deepest samples away from moderately to steeply east tilted Tertiary strata in the southeastern Black Mountains, these data indicate an average initial dip of the detachment system of the order of 20-degrees, similar to that determined for detachment faults in west central Arizona and southeastern California. Beginning with an initially listric geometry, a pattern of footwall unroofing accompanied by dike intrusion progress northwestward. This pattern may be explained by a model where migration of footwall flexures occur below a scoop-shaped banging wall block. One consequence of this model is that gently dipping ductile fabrics developed in the middle crust steepen in the upper crust during unloading. This process resolves the low initial dips obtained here with mapping which suggests transport of the upper plate on moderately to steeply dipping surfaces in the middle and upper crust.
Resumo:
Time-space relations of extension and volcanism place critical constraints on models of Basin and Range extensional processes. This paper addresses such relations in a 130-km-wide transect in the eastern Great Basin, bounded on the east by the Ely Springs Range and on the west by the Grant and Quinn Canyon ranges. Stratigraphic and structural data, combined with 40Ar/39Ar isotopic ages of volcanic rocks, document a protracted but distinctly episodic extensional history. Field relations indicate four periods of faulting. Only one of these periods was synchronous with nearby volcanic activity, which implies that volcanism and faulting need not be associated closely in space and time. Based on published dates and the analyses reported here, the periods of extension were (1) prevolcanic (pre-32 Ma), (2) early synvolcanic (30 to 27 Ma), (3) immediately postvolcanic (about 16 to 14 Ma), and (4) Pliocene to Quaternary. The break between the second and third periods is distinct. The minimum gap between the first two periods is 2 Ma, but the separation may be much larger. Temporal separation of the last two periods is only suggested by the stratigraphic record and cannot be rigorously demonstrated with present data. The three younger periods of faulting apparently occurred across the entire transect. The oldest period is recognized only at the eastern end of the transect, but appears to correlate about 150 km northward along strike with extension in the Northern Snake Range-Kern Mountains area. Therefore the oldest period also is regional in extent, but affected a different area than that affected by younger periods. This relation suggests that distinct extensional structures and master detachment faults were active at different times. The correlation of deformation periods of a few million years duration across the Railroad Valley-Pioche transect suggests that the scale of active extensional domains in the Great Basin may be greater than 100 km across strike.
Resumo:
Contraction, strike slip, and extension displacements along the Hikurangi margin northeast of the North Island of New Zealand coincide with large lateral gradients in material properties. We use a finite- difference code utilizing elastic and elastic-plastic rheologies to build large- scale, three-dimensional numerical models which investigate the influence of material properties on velocity partitioning within oblique subduction zones. Rheological variation in the oblique models is constrained by seismic velocity and attenuation information available for the Hikurangi margin. We compare the effect of weakly versus strongly coupled subduction interfaces on the development of extension and the partitioning of velocity components for orthogonal and oblique convergence and include the effect of ponded sediments beneath the Raukumara Peninsula. Extension and velocity partitioning occur if the subduction interface is weak, but neither develops if the subduction interface is strong. The simple mechanical model incorporating rheological variation based on seismic observations produces kinematics that closely match those published from the Hikurangi margin. These include extension within the Taupo Volcanic Zone, uplift over ponded sediments, and dextral contraction to the south.
Resumo:
Contaminant metals bound to sediments are subject to considerable solubilization during passage of the sediments through the digestive systems of deposit feeders. We examined the kinetics of this process, using digestive fluids extracted from deposit feeders Arenicola marina and Parastichopus californicus and then incubated with contaminated sediments. Kinetics are complex, with solubilization followed occasionally by readsorption onto the sediment. In general, solubilization kinetics are biphasic, with an initial rapid step followed by a slower reaction. For many sediment-organism combinations, the reaction will not reach a steady state or equilibrium within the gut retention time (GRT) of the organisms, suggesting that metal bioavailability in sediments is a time-dependent parameter. Experiments with commercial protein solutions mimic the kinetic patterns observed with digestive fluids, which corroborates our previous study that complexation by dissolved amino acids (AA) in digestive fluids leads to metal solubilization (Chen & Mayer 1998b; Environ Sci Technol 32:770-778). The relative importance of the fast and slow reactions appears to depend on the ratio of ligands in gut fluids to the amount of bound metal in sediments. High ligand to solid metal ratios result in more metals released in fast reactions and thus higher lability of sedimentary metals. Multiple extractions of a sediment with digestive fluid of A. marina confirm the potential importance of incomplete reactions within a single deposit-feeding event, and make clear that bioavailability to a single animal is Likely different from that to a community of organisms. The complex kinetic patterns lead to the counterintuitive prediction that toxification of digestive enzymes by solubilized metals will occur more readily in species that dissolve less metals.