3 resultados para mixed-model assembly

em DigitalCommons - The University of Maine Research


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A basin-wide interdecadal change in both the physical state and the ecology of the North Pacific occurred near the end of 1976. Here we use a physical-ecosystem model to examine whether changes in the physical environment associated with the 1976-1977 transition influenced the lower trophic levels of the food web and if so by what means. The physical component is an ocean general circulation model, while the biological component contains 10 compartments: two phytoplankton, two zooplankton, two detritus pools, nitrate, ammonium, silicate, and carbon dioxide. The model is forced with observed atmospheric fields during 1960-1999. During spring, there is a similar to 40% reduction in plankton biomass in all four plankton groups during 1977-1988 relative to 1970-1976 in the central Gulf of Alaska (GOA). The epoch difference in plankton appears to be controlled by the mixed layer depth. Enhanced Ekman pumping after 1976 caused the halocline to shoal, and thus the mixed layer depth, which extends to the top of the halocline in late winter, did not penetrate as deep in the central GOA. As a result, more phytoplankton remained in the euphotic zone, and phytoplankton biomass began to increase earlier in the year after the 1976 transition. Zooplankton biomass also increased, but then grazing pressure led to a strong decrease in phytoplankton by April followed by a drop in zooplankton by May: Essentially, the mean seasonal cycle of plankton biomass was shifted earlier in the year. As the seasonal cycle progressed, the difference in plankton concentrations between epochs reversed sign again, leading to slightly greater zooplankton biomass during summer in the later epoch.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efforts to understand and model the dynamics of the upper ocean would be significantly advanced given the ability to rapidly determine mixed layer depths (MLDs) over large regions. Remote sensing technologies are an ideal choice for achieving this goal. This study addresses the feasibility of estimating MLDs from optical properties. These properties are strongly influenced by suspended particle concentrations, which generally reach a maximum at pycnoclines. The premise therefore is to use a gradient in beam attenuation at 660 nm (c660) as a proxy for the depth of a particle-scattering layer. Using a global data set collected during World Ocean Circulation Experiment cruises from 1988-1997, six algorithms were employed to compute MLDs from either density or temperature profiles. Given the absence of published optically based MLD algorithms, two new methods were developed that use c660 profiles to estimate the MLD. Intercomparison of the six hydrographically based algorithms revealed some significant disparities among the resulting MLD values. Comparisons between the hydrographical and optical approaches indicated a first-order agreement between the MLDs based on the depths of gradient maxima for density and c660. When comparing various hydrographically based algorithms, other investigators reported that inherent fluctuations of the mixed layer depth limit the accuracy of its determination to 20 m. Using this benchmark, we found a similar to 70% agreement between the best hydrographical-optical algorithm pairings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SeaWiFS (Sea-viewing Wide Field-of-view Sensor) chlorophyll data revealed strong interannual variability in fall phytoplankton dynamics in the Gulf of Maine, with 3 general features in any one year: (1) rapid chlorophyll increases in response to storm events in fall; (2) gradual chlorophyll increases in response to seasonal wind-and cooling-induced mixing that gradually deepens the mixed layer; and (3) the absence of any observable fall bloom. We applied a mixed-layer box model and a 1-dimensional physical-biological numerical model to examine the influence of physical forcing (surface wind, heat flux, and freshening) on the mixed-layer dynamics and its impact on the entrainment of deep-water nutrients and thus on the appearance of fall bloom. The model results suggest that during early fall, the surface mixed-layer depth is controlled by both wind-and cooling-induced mixing. Strong interannual variability in mixed-layer depth has a direct impact on short-and long-term vertical nutrient fluxes and thus the fall bloom. Phytoplankton concentrations over time are sensitive to initial pre-bloom profiles of nutrients. The strength of the initial stratification can affect the modeled phytoplankton concentration, while the timing of intermittent freshening events is related to the significant interannual variability of fall blooms.