7 resultados para metamorphic
em DigitalCommons - The University of Maine Research
Resumo:
We present a series of three-dimensional numerical models investigating the effects of metamorphic strengthening and weakening on the geodynamic evolution of convergent orogens that are constrained by observations from an exposed mid-crustal section in the New England Appalachians. The natural mid-crustal section records evidence for spatially and temporally variable mid-crustal strength as a function of metamorphic grade during prograde polymetamorphism. Our models address changes in strain rate partitioning and topographic uplift as a function of strengthening/weakening in the middle crust, as well as the resultant changes in deformation kinematics and potential exhumation patterns of high-grade metamorphic rock. Results suggest that strengthening leads to strain rate partitioning around the zone and suppressed topographic uplift rates whereas weakening leads to strain rate partitioning into the zone and enhanced topographic uplift rates. Deformation kinematics recorded in the orogen are also affected by strengthening/weakening, with complete reversals in shear sense occurring as a function of strengthening/weakening without changes in plate boundary kinematics.
Resumo:
Since Bowen and Tuttle's pioneering study of the system MgO-SiO2-H2O in 1949, advances in experimental metamorphic petrology have occurred steadily rather than in “leaps and bounds”. The number and quality of papers published during the past quadrennium, 1975–1978, attests to the health of the science. Although the purpose of this report is to focus international attention on the U.S. effort in experimental metamorphic petrology, some papers published by foreign experimentalists have been included, especially where their contributions complement those made in the U.S. To keep the review current, abstracts of papers read at national meetings of the Geological Society of America and the American Geophysical Union in 1978 are included.
Resumo:
Electron microprobe data are presented for chevkinite-group minerals from granulite-facies rocks and associated pegmatities of the Napier Complex and Mawson Station charnockite in East Antarctica and from the Eastern Ghats, South India. Their compositions conform to the general formula for this group, viz. A(4)BC(2)D(2)Si(4)O(22) where, in the analysed specimens A = (rare-earth elements (REE), Ca, Y, Th), B = Fe(2+) Mg, C = (Al, Mg, Ti, Fe(2+), Fe(3+), Zr) and D = Ti and plot within the perrierite field oftlic total Fe (as FeO) (wt.%) vs. CaO (wt.%) discriminator diagram of Macdonald and Belkin (2002). In contrast to most chevkinite-group minerals, the A site shows unusual enrichment in the MREE and HREE relative to the LREE and Ca. In one sample from the Napier Complex, Y is the dominant cation among the total REE + Y in the A site, the first reported case of Y-dominance in the chevkinite group. The minerals include the most Al-rich yet reported in the chevkinite group (<= 9.15 wt.% Al(2)O(3)), sufficient to fill the C site in two samples. Conversely, the amount of Ti in these samples does not fill the D site. and, thus, some of the Al could be making up the deficiency at D, a situation not previously reported in the chevkinite group. Fe abudances are low, requiring Mg to occupy up to 45% of the B site. The chevkinite-group minerals analysed originated from three distinct parageneses: (1) pegmatites containing hornblende and orthopyroxene or garnet; (2) orthopyroxene-bearing gneiss and granulite; (3) highly aluminous paragneisses in which the associated minerals are relatively magnesian or aluminous. Chevkinite-group minerals from the first two parageneses have relatively high FeO content and low MgO and Al(2)O(3) contents; their compositions plot in the field for mafic and intermediate igneous rocks. In contrast, chevkinite-group minerals from the third paragenesis are notably more aluminous and have greater Mg/Fe ratios.
Resumo:
The Szklary holtite is represented by three compositional varieties: (I) Ta-bearing (up to 14.66 wt.% Ta(2)O(5)), which forms homogeneous crystals and cores within zoned crystals; (2) Ti-bearing (up to 3.82 wt.% TiO(2)), found as small domains within the core; and (3) Nb-bearing (up to 5.30 wt.% Nb(2)O(5),) forming the rims of zoned crystals. All three varieties show variable Sb+As content, reaching 19.18 wt.% Sb(2)O(3) (0.87 Sb a.p.f.u.) and 3.30 wt.% As(2)O(3) (0.22 As a.p.f.u.) in zoned Ta-bearing holtite, which constitutes the largest Sb+As content reported for the mineral. The zoning in holtite is a result of Ta-Nb fractionation in the parental pegmatite-forming melt together with contamination of the relatively thin Szklary dyke by Fe, Mg and Ti. Holtite and the As- and Sb-bearing dumortierite, which in places overgrows the youngest Nb-bearing zone, suggest the following crystallization sequence: Ta-bearing holtite -> Ti-bearing holtite -> Nb-bearing holtite -> As- and Sb-bearing, (Ta,Nb,Ti)-poor dumortierite -> As- and Sb-dominant, (Ta,Nb,Ti)-free dumortierite-like mineral (16.81 wt.% As(2)O(3) and 10.23 wt.% Sb(2)O(3)) with (As+Sb) > Si. The last phase is potentially a new mineral species, Al(6)rectangle B(Sb,As)(3)O(15). or Al(5)rectangle(2)B(Sb,As)(3)O(12)(OH)(3), belonging to the dumortierite group. The Szklary holtite shows no evidence of clustering of compositions around 'holtite I' and 'holtite II'. Instead, the substitutions of Si(4+) by Sb(3+)+As(3+) at the Si/Sb sites and of Ta(5+) by Nb(5+) or Ti(4+) at the Al(l) site suggest possible solid solutions between: (1) (Sb,As)-poor and (Sb,As)-rich holtite; (2) dumortierite and the unnamed (As+Sb)-dominant dumortierite-like mineral; and (3) Ti-bearing dumortierite and holtite, i.e. our data provide further evidence for miscibility between holtite and dumortierite, but leave open the question of defining the distinction between them. The Szklary holtite crystallized from the melt along with other primary Ta-Nb-(Ti) minerals such as columbite-(Mn), tantalite-(Mn), stibiotantalite and stibiocolumbite as the availability of Ta decreased. The origin of the parental melt can be related to anatexis in the adjacent Sowie Mountains complex, leading to widespread migmatization and metamorphic segregation in pelitic-psammitic sediments metamorphosed at similar to 390-380 Ma.
Resumo:
Ar-40/Ar-39 total gas and plateau dates from muscovite and biotite in the southern Black Hills, South Dakota, provide evidence for a period of Middle Proterozoic slow cooling. Early Proterozoic (1600-1650 Ma) mica dates were obtained from metasedimentary rocks located in a synformal structure between the Harney Peak and Bear Mountain domes and also south of Bear Mountain. Metamorphic rocks from the dome areas and undeformed samples of the similar to 1710 Ma Harney Peak Granite (HPG) yield Middle Proterozoic mica dates (similar to 1270-1500 Ma). Two samples collected between the synform and Bear Mountain dome yield intermediate total gas mica dates of similar to 1550 Ma. We suggest two end-member interpretations to explain the map pattern of cooling ages: (1) subhorizontal slow cooling of an area which exhibits variation in mica Ar retention intervals or (2) mild folding of a Middle Proterozoic (similar to 1500 Ma) similar to 300 degrees C isotherm. According to the second interpretation, the preservation of older dates between the domes may reflect reactivation of a preexisting synformal structure (and downwarping of relatively cold rocks) during a period of approximately east-west contraction and slow uplift during the Middle Proterozoic. The mica data, together with hornblende data from the Black Hills published elsewhere, indicate that the ambient country-rock temperature at the 3-4 kbar depth of emplacement of the HPG was between 350 degrees C and 500 degrees C, suggesting that the average upper crustal geothermal gradient was 25 degrees-40 degrees C/km prior to intrusion. The thermochronologic data suggest HPG emplacement was followed by a similar to 200 m.y. period of stability and tectonic quiescence with little uplift. We propose that crust thickened during the Early Proterozoic was uplifted and erosionally(?) thinned prior to similar to 1710 Ma and that the HPG magma was emplaced into isostatically stable crust of relatively normal thickness. We speculate that uplift and crustal thinning prior to HPG intrusion was the result of differential thinning of the subcrustal lithosphere beneath the Black Hills. If so, this process would have also caused an increase in mantle heat flux across the Moho and triggered vapor-absent melting of biotite to produce the HPG magma. This scenario for posttectonic granite generation is supported, in part, by the fact that in the whole of the Black Hills, the HPG is spatially associated with the deepest exposed Early Proterozoic country rock.
Resumo:
Two Proterozoic terranes with different metamorphic histories are distinguished from geological mapping in southwestern Wedel Jarlsberg Land: a northern greenschist facies terrane and a southern amphibolite facies terrane which has been overprinted by greenschist facies metamorphism. To better characterize the tectonothermal history of these terranes we have obtained new Ar-40/Ar-39 mineral dates from this area. A muscovite separate from the northern terrane yielded a Caledonian plateau age of 432 +/- 7 Ma. The southern terrane yielded significantly older Ar-40/Ar-39 ages with three muscovite plateau dates of 584 +/- 14 Ma, 575 +/- 15 Ma, and 459 +/- 9 Ma, a 484 +/- 5 Ma biotite plateau date, and a 616 +/- 17 Ma hornblende plateau date. The oldest thermochronological dates are over 300 Ma younger than the age of amphibolite facies metamorphism and therefore probably do not represent uplift-related cooling. Instead, the Vendian dates correlate well with a regionally widespread magmatic and metamorphic/thermal resetting event recognized within Caledonian complexes of northwestern Spitsbergen and Nordaustlandet. The apparent Ordovician dates are interpreted to represent partial resetting, suggesting that late Caledonian greenschist facies overprinting of the southern terrane was of variable intensity.
Resumo:
In the Mt. Olympos region of northeastern Greece, continental margin strata and basement rocks were subducted and metamorphosed under blueschist facies conditions, and thrust over carbonate platform strata during Alpine orogenesis. Subsequent exposure of the subducted basement rocks by normal faulting has allowed an integrated study of the timing of metamorphism, its relationship to deformation, and the thermal history of the subducted terrane. Alpine low-grade metamorphic assemblages occur at four structural levels. Three thrust sheets composed of Paleozoic granitic basement and Mesozoic metasedimentary cover were thrust over Mesozoic carbonate rocks and Eocene flysch; thrusting and metamorphism occurred first in the highest thrust sheets and progressed downward as units were imbricated from NE to SW. 40Ar/39Ar spectra from hornblende, white mica, and biotite samples indicate that the upper two units preserve evidence of four distinct thermal events: (1) 293–302 Ma crystallization of granites, with cooling from >550°C to <325°C by 284 Ma; (2) 98–100 Ma greenschist to blueschist-greenschist transition facies metamorphism (T∼350–500°C) and imbrication of continental thrust sheets; (3) 53–61 Ma blueschist facies metamorphism and deformation of the basement and continental margin units at T<350–400°C; (4) 36–40 Ma thrusting of blueschists over the carbonate platform, and metamorphism at T∼200–350°C. Only the Eocene and younger events affected the lower two structural packages. A fifth event, indicated by diffusive loss profiles in microcline spectra, reflects the beginning of uplift and cooling to T<100–150°C at 16–23 Ma, associated with normal faulting which continued until Quaternary time. Incomplete resetting of mica ages in all units constrains the temperature of metamorphism during continental subduction to T≤350°C, the closure temperature for Ar in muscovite. The diffusive loss profiles in micas and K-feldspars enable us to “see through” the younger events to older events in the high-T parts of the release spectra. Micas grown during earlier metamorphic events lost relatively small amounts of Ar during subsequent high pressure-low temperature metamorphism. Release spectra from phengites grown during Eocene metamorphism and deformation record the ages of the Ar-loss events. Alpine deformation in northern Greece occurred over a long time span (∼90 Ma), and involved subduction and episodic imbrication of continental basement before, during, and after the collision of the Apulian and Eurasian plates. Syn-subduction uplift and cooling probably combined with intermittently higher cooling rates during extensional events to preserve the blueschist facies mineral assemblages as they were exhumed from depths of >20 km. Extension in the Olympos region was synchronous with extension in the Mesohellenic trough and the Aegean back-arc, and concurrent with westward-progressing shortening in the external Hellenides.