2 resultados para marine atmospheric boundary layer
em DigitalCommons - The University of Maine Research
Resumo:
The goal of this study was to test the hypothesis that the aggregated state of natural marine particles constrains the sensitivity of optical beam attenuation to particle size. An instrumented bottom tripod was deployed at the 12-m node of the Martha's Vineyard Coastal Observatory to monitor particle size distributions, particle size-versus-settling-velocity relationships, and the beam attenuation coefficient (c(p)) in the bottom boundary layer in September 2007. An automated in situ filtration system on the tripod collected 24 direct estimates of suspended particulate mass (SPM) during each of five deployments. On a sampling interval of 5 min, data from a Sequoia Scientific LISST 100x Type B were merged with data from a digital floc camera to generate suspended particle volume size distributions spanning diameters from approximately 2 mu m to 4 cm. Diameter-dependent densities were calculated from size-versus-settling-velocity data, allowing conversion of the volume size distributions to mass distributions, which were used to estimate SPM every 5 min. Estimated SPM and measured c(p) from the LISST 100x were linearly correlated throughout the experiment, despite wide variations in particle size. The slope of the line, which is the ratio of c(p) to SPM, was 0.22 g m(-2). Individual estimates of c(p):SPM were between 0.2 and 0.4 g m(-2) for volumetric median particle diameters ranging from 10 to 150 mu m. The wide range of values in c(p):SPM in the literature likely results from three factors capable of producing factor-of-two variability in the ratio: particle size, particle composition, and the finite acceptance angle of commercial beam-transmissometers.
Resumo:
We examined high-resolution cross-shelf distributions of particulate organic carbon (POC) and dissolved O(2) during the upwelling season off the Oregon coast. Oxygen concentrations were supersaturated in surface waters, and hypoxic in near-bottom waters, with greatly expanded hypoxic conditions late in the season. Simplified time-dependent mass balances on cross-shelf integrated concentrations of these two parameters, found the following: ( 1) The average net rate of photosynthesis generated 2.1 mmol O(2) m(-3) d(-1) and ( 2) essentially none of the corresponding net carbon fixation of 1.4 mmol m(-3) d(-1) could be accounted for in the observed standing stocks of POC. After examining other possible sinks for carbon, we conclude that most of the net production is being exported to the adjacent deep ocean. A simplified POC budget suggests that about a quarter of the export is via alongshore advection, and the remainder is due to some other process. We propose a simplistic conceptual model of across-shelf transport in which POC sinks to the bottom boundary layer where it comes into contact with mineral ballast material but is kept in suspension by high turbulence. When upwelling conditions ease, the BBL waters move seaward, carrying the suspended, ballasted POC with it where it sinks rapidly into the deep ocean at the shelf break. This suggests a mechanism whereby the duration and frequency of upwelling events and relaxations can determine the extent to which new carbon produced by photosynthesis in the coastal ocean is exported to depth rather than being respired on the shelf.