3 resultados para locality influences
em DigitalCommons - The University of Maine Research
Resumo:
Samples of snow and firn from accumulation zones on Clark, Commonwealth, Blue and Victoria Upper Glaciers in the McMurdo Dry Valleys (similar to 77-78 degrees S, 161-164 degrees E), Antarctica, are evaluated chemically and isotopically to determine the relative importance of local (site-specific) factors vs regional-scale influences in defining glaciochemistry. Spatial variation in snow and firn chemistry confirms documented trends within individual valleys regarding major-ion deposition relative to elevation and to distance from the coast. Sodium and methylsulfonate (MS-), for example, follow a decreasing gradient with distance from the coast along the axis of Victoria Valley (350-119 mu gL(-1) for Na+; 33-14 mu gL(-1) for MS-); a similar pattern exists between Commonwealth and Newall Glaciers in the Asgaard Range. When comparing major-ion concentrations (e.g. Na-+,Na- MS-, Ca2+) or trace metals (e.g. Al, Fe) among different valleys, however, site-specific exposures to marine and local terrestrial chemical sources play a dominant role. Because chemical signals at all sites respond to particulates with varying mixtures of marine and terrestrial sources, each of these influences on site glaciochemistry must be considered when drawing temporal climate inferences on regional scales.
Resumo:
In 1884, Lorenzen proposed the formula MgAI2SiO6 for his new mineral kornerupine from Fiskenæsset and did not suspect it to contain boron. Lacroix and de Gramont (1919) reported boron in Fiskenæsset kornerupine, while Herd (1973) found none. New analyses (ion microprobe mass analyser and spectrophotometric) of kornerupine in three specimens from the type locality, including the specimens analysed by Lorenzen and Herd, indicate the presence of boron in all three, in amounts ranging from 0.50 to 1.44 wt.% B203, e.g. (Li0.04 Na0.01 Ca0.01) (Mg3.49 Mn0.01 Fe0.17 Ti0.01 Al5.64)Σ9.30 (Si3.67 Al1.02 B0.31)Σ5 O21 (OH0.99 F0.01) for Lorenzen's specimen. Textures and chemical compositions suggest that kornerupine crystallized in equilibrium in the following assemblages, all with anorthite (An 92-95) and phlogopite (XFe = atomic Fe/(Fe + Mg) = 0.028-0.035): (1) kornerupine (0.045)-gedrite (0.067); (2) kornerupine (0.038-0.050)-sapphirine (0.032-0.035); and (3) kornerupine (0.050)-hornblende. Fluorine contents of kornerupine range from 0.01 to 0.06%, of phlogopite, from 0.09 to 0.10%. In the first assemblage, sapphirine (0.040) and corundum are enclosed in radiating bundles of kornerupine; additionally sapphirine, corundum, and/or gedrite occur with chlorite and pinite (cordierite?) as breakdown products of kornerupine. Kornerupine may have formed by reactions such as: gedrite + sapphirine + corundum + B203 (in solution) + H20 = kornerupine + anorthite + Na-phlogopite under conditions of the granulite facies. Boron for kornerupine formation was most likely remobilized by hydrous fluids from metasedimentary rocks occurring along the upper contact of the Fiskenæsset gabbro-anorthosite complex with amphibolite.
Redescription of Hyalella Azteca from Its Type Locality, Vera Cruz, Mexico (Amphipoda : Hyalellidae)
Resumo:
Hyalella azteca is a species complex distributed in North, Central, and northern South America. The identity of the species has always been a problem, especially because the original description by Saussure (1858) from a "cistern" in Vera Cruz, Mexico, is poor, and the figures are not clear. Since then, mention of the type material or specimens from the type locality has not been made by investigators using the name H. azteca. Ecological and genetic information available today suggests that there are several species in the complex commonly referred to as H. azteca. The subtle morphological differences among the populations have made the problem of defining these species very complicated. To aid in this process, we present here the morphological description of H. azteca based on the syntype series established by Saussure and deposited in the Museum d'Histoire Naturelle, Ville de Geneve, Switzerland.