1 resultado para laser fusion
em DigitalCommons - The University of Maine Research
Resumo:
Sanidine separates from pumice of the early Miocene Peach Springs Tuff are concordantly dated at 18.5 ± 0.2 Ma by two isotopic techniques. The Peach Springs Tuff is the only known unit that can be correlated between isolated outcrops of Miocene strata from the central Mojave Desert of southeastern California to the western Colorado Plateau in Arizona, across five structural provinces, a distance of 350 km. Thus the age of the Peach Springs Tuff is important to structural and paleogeographic reconstructions of a large region. Biotite and sanidine separates from bulk samples of the Peach Springs Tuff from zones of welding and vapor-phase alteration have not produced consistent ages by the K-Ar method. Published ages of mineral separates from 17 localities ranged from 16.2 to 20.5 Ma. Discordant 40Ar/39Ar incremental release spectra were obtained for one biotite and two of the sanidine separates. Ages that correspond to the last gas increments are as old as 27 Ma. The 40Ar/39Ar incremental release determinations on sanidine separated from blocks of Peach Springs Tuff pumice yield ages of 18.3 ± 0.3 and 18.6 ± 0.4 Ma. Laser fusion measurements yield a mean age of 18.51 ± 0.10. The results suggest that sanidine and biotite K-Ar ages older than about 18.5 Ma are due to inherited Ar from pre-Tertiary contaminants, which likely were incorporated into the tuff during deposition. Sanidine K-Ar ages younger than 18 Ma probably indicate incomplete extraction of radiogenic 40Ar, whereas laser fusion dates of biotite and hornblende younger than 18 Ma likely are due to postdepositional alteration. Laser fusion ages as high as 19.01 Ma on biotite grains from pumice suggest that minerals from pre-Tertiary country rocks also were incorporated in the magma chamber.