7 resultados para corner cube retroreflector

em DigitalCommons - The University of Maine Research


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional numerical models are used to investigate the mechanical evolution of the southern Alaskan plate corner where the Yakutat and the Pacific plates converge on the North American plate. The evolving model plate boundary consists of Convergent, Lateral, and Subduction subboundaries with flow separation of incoming material into upward or downward trajectories forming dual, nonlinear advective thermal/mechanical anomalies that fix the position of major subaerial mountain belts. The model convergent subboundary evolves into two teleconnected orogens: Inlet and Outlet orogens form at locations that correspond with the St. Elias and the Central Alaska Range, respectively, linked to the East by the Lateral boundary. Basins form parallel to the orogens in response to the downward component of velocity associated with subduction. Strain along the Lateral subboundary varies as a function of orogen rheology and magnitude and distribution of erosion. Strain-dependent shear resistance of the plate boundary associated with the shallow subduction zone controls the position of the Inlet orogen. The linkages among these plate boundaries display maximum shear strain rates in the horizontal and vertical planes where the Lateral subboundary joins the Inlet and Outlet orogens. The location of the strain maxima shifts with time as the separation of the Inlet and Outlet orogens increases. The spatiotemporal predictions of the model are consistent with observed exhumation histories deduced from thermochronology, as well as stratigraphic studies of synorogenic deposits. In addition, the complex structural evolution of the St Elias region is broadly consistent with the predicted strain field evolution. Citation: Koons, P. O., B. P. Hooks, T. Pavlis, P. Upton, and A. D. Barker (2010), Three-dimensional mechanics of Yakutat convergence in the southern Alaskan plate corner, Tectonics, 29, TC4008, doi: 10.1029/2009TC002463.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we report the first direct underwater observations of extensive human-caused impacts on two remote seamounts in the Corner Rise complex (north-western Atlantic). This note documents evidence of anthropogenic damage on the summits of Kukenthal peak (on Corner Seamount) and Yakutat Scamount, likely resulting from a limited Russian fishery from the mid- 1970s to the mid-1990s, highlighting how bottom trawling can have long-term detrimental effects oil deep-water benthic fauna.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We address under what conditions a magma generated by partial melting at 100 km depth in the mantle wedge above a subduction zone can reach the crust in dikes before stalling. We also address under what conditions primitive basaltic magma (Mg # >60) can be delivered from this depth to the crust. We employ linear elastic fracture mechanics with magma solidification theory and perform a parametric sensitivity analysis. All dikes are initiated at a depth of 100 km in the thermal core of the wedge, and the Moho is fixed at 35 km depth. We consider a range of melt solidus temperatures (800-1100 degrees C), viscosities (10-100 Pa s), and densities (2400-2700 kg m(-3)). We also consider a range of host rock fracture toughness values (50-300 MPa m(1/2)) and dike lengths (2-5 km) and two thermal structures for the mantle wedge (1260 and 1400 degrees C at 100 km depth and 760 and 900 degrees C at 35 km depth). For the given parameter space, many dikes can reach the Moho in less than a few hundred hours, well within the time constraints provided by U series isotope disequilibria studies. Increasing the temperature in the mantle wedge, or increasing the dike length, allows additional dikes to propagate to the Moho. We conclude that some dikes with vertical lengths near their critical lengths and relatively high solidus temperatures will stall in the mantle before reaching the Moho, and these may be returned by corner flow to depths where they can melt under hydrous conditions. Thus, a chemical signature in arc lavas suggesting partial melting of slab basalts may be partly influenced by these recycled dikes. Alternatively, dikes with lengths well above their critical lengths can easily deliver primitive magmas to the crust, particularly if the mantle wedge is relatively hot. Dike transport remains a viable primary mechanism of magma ascent in convergent tectonic settings, but the potential for less rapid mechanisms making an important contribution increases as the mantle temperature at the Moho approaches the solidus temperature of the magma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jakobshavn Isbrae is a major ice stream that drains the west-central Greenland ice sheet and becomes afloat in Jakobshavn Isfiord (69degreesN, 49degreesW), where it has maintained the world's fastest-known sustained velocity and calving rate (7 km a(-1)) for at least four decades. The floating portion is approximately 12 km long and 6 km wide. Surface elevations and motion vectors were determined photogrammetrically for about 500 crevasses on the floating ice, and adjacent grounded ice, using aerial photographs obtained 2 weeks apart in July 1985. Surface strain rates were computed from a mesh of 399 quadrilateral elements having velocity measurements at each corner. It is shown that heavy crevassing of floating ice invalidates the assumptions of linear strain theory that (i) surface strain in the floating ice is homogeneous in both space and time, (ii) the squares and products of strain components are nil, and (iii) first- and second-order rotation components are small compared to strain components. Therefore, strain rates and rotation rates were also computed using non-linear strain theory. The percentage difference between computed linear and non-linear second invariants of strain rate per element were greatest (mostly in the range 40-70%) where crevassing is greatest. Isopleths of strain rate parallel and transverse to flow and elevation isopleths relate crevassing to known and inferred pinning points.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Throughout the New England and Corner Rise seamounts of the western North Atlantic Ocean, several ophiuroid species are conspicuously epizoic on octocorals. One species, Ophiocreas oedipus, was found only on the chrysogorgiid octocoral Metallogorgia melanotrichos. Colonies of M. melanotrichos were collected from 11 seamounts during expeditions in 2003, 2004, and 2005 at depths between 1300 and 2200 m. O. oedipus is obligately associated with M. melanotrichos, leading a solitary existence on all octocorals observed. Evidence suggests that a young brittle star settles directly on a young octocoral and the 2 species then grow, mature, and senesce together. The brittle star benefits directly by being above the bottom for suspension feeding and is passively protected by the octocoral, but the latter, as far as we have been able to determine, Seems neither to benefit nor be disadvantaged by the relationship.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exploration of the New England and Corner Rise Seamounts produced four new species of chrysogorgild octocorals with the spiral iridogorgiid growth form. Three species are described as new in the genus iridogorgia and one is described in the new genus Rhodaniridogoigia. Both genera have representatives in the Atlantic and Pacific Oceans. Iridogorgia magnispiralis sp. nov., is one of the largest octocorals encountered in the deep sea and seems to be widespread in the Atlantic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two new species belonging to the precious coral genus Corallium were collected during a series of exploratory cruises to the New England and Corner Rise Seamounts in 2003-2005. One red species, Corallium bathyrubrum sp. nov., and one white species, C. bayeri sp. nov., are described. Corallium bathyrubrum is the first red Corallium to be reported from the western Atlantic. An additional species, C. niobe Bayer, 1964 originally described from the Straits of Florida, was also collected and its description augmented.