6 resultados para coralline algae

em DigitalCommons - The University of Maine Research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxygen isotopic composition and Mg/Ca ratios in the skeletons of long-lived coralline algae record ambient seawater temperature over time. Similarly, the carbon isotopic composition in the skeletons record delta(13)C values of ambient seawater dissolved inorganic carbon. Here, we measured delta(13)C in the coralline alga Clathromorphum nereostratum to test the feasibility of reconstructing the intrusion of anthropogenic CO(2) into the northern North Pacific Ocean and Bering Sea. The delta(13)C was measured in the high Mgcalcite skeleton of three C. nereostratum specimens from two islands 500 km apart in the Aleutian archipelago. In the records spanning 1887 to 2003, the average decadal rate of decline in delta(13)C values increased from 0.03% yr(-1) in the 1960s to 0.095% yr(-1) in the 1990s, which was higher than expected due to solely the delta(13)C-Suess effect. Deeper water in this region exhibits higher concentrations of CO(2) and low delta(13)C values. Transport of deeper water into surface water (i.e., upwelling) increases when the Aleutian Low is intensified. We hypothesized that the acceleration of the delta(13)C decline may result from increased upwelling from the 1960s to 1990s, which in turn was driven by increased intensity of the Aleutian Low. Detrended delta(13)C records also varied on 4-7 year and bidecadal timescales supporting an atmospheric teleconnection of tropical climate patterns to the northern North Pacific Ocean and Bering Sea manifested as changes in upwelling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mortality of corals is increasing due to bleaching, disease and algal overgrowth. In the Caribbean, low rates of coral recruitment contribute to the slow or undetectable rates of recovery in reef ecosystems. Although algae have long been suspected to interfere with coral recruitment, the mechanisms of that interaction remain unclear. We experimentally tested the effects of turf algal abundance on 3 sequential factors important to recruitment of corals: the biophysical delivery of planktonic coral larvae, their propensity to settle, and the availability of microhabitats where they survive. We deployed coral settlement plates inside and outside damselfish Stegastes spp. gardens and cages. Damselfish aggression reduced herbivory from fishes, and cages became fouled with turf algae, both locally increasing algal biomass surrounding the plates. This reduced flushing rates in nursery microhabitats on the plate underside, limiting larvae available for settlement. Coral spat settled preferentially on an early successional crustose coralline alga Titanoderma prototypum but also on or near other coralline algae, biofilms, and calcareous polychaete worm tubes. Post-settlement survival was highest in the fully grazed, lowest algal biomass treatment, and after 27 mo 'spat' densities were 73 % higher in this treatment. The 'gauntlet' refers to the sequence of ecological processes through which corals must survive to recruit. The highest proportion of coral spat successfully running the gauntlet did so under conditions of low algal biomass resulting from increased herbivory. If coral recruitment is heavily controlled at very local scales by this gauntlet, then coral reef managers could improve a reef's recruitment potential by managing for reduced algal biomass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Encrusting algae are conspicuous components of hard-substratum benthic communities in the photic zone despite being poor competitors and slow growers. Little is known about their growth rates or about mechanisms controlling key processes such as wound healing and surviving overgrowth. We manipulated 12 crustose species (including red and brown algae and a lichen) from the intertidal zone of Washington, USA, studying their varying responses to identical experimental conditions. Three of 8 crust species tested showed increased growth rates with size. Species healed from standardized wounds at different rates and using different mechanisms (e.g. lateral vs vertical regeneration) as seen in cross-sections. Three species showed altered growth rates at unwounded margins of wounded crusts, suggesting intrathallus communication. Year-long experiments involving simulated overgrowth showed that some species can maintain healthy tissue in a covered area, and one (the coralline Lithothamnion phymatodeum) even grew new tissue there. Other species gradually lost color, thickness, and area in covered areas. Hildenbrandia occidentalis survived remarkably well when covered, possibly due to its very slow growth and low metabolic demand. One suggested mechanism underlying the high variation in responses among crusts is the degree to which their thalli may be anatomically integrated by features such as cell fusions; physiological work testing translocation via these features is needed. Other mechanisms allowing persistence include rapid wound healing and frequent recruitment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arctic Ocean freshening can exert a controlling influence on global climate, triggering strong feedbacks on ocean-atmospheric processes and affecting the global cycling of the world's oceans. Glacier-fed ocean currents such as the Alaska Coastal Current are important sources of freshwater for the Bering Sea shelf, and may also influence the Arctic Ocean freshwater budget. Instrumental data indicate a multiyear freshening episode of the Alaska Coastal Current in the early 21st century. It is uncertain whether this freshening is part of natural multidecadal climate variability or a unique feature of anthropogenically induced warming. In order to answer this, a better understanding of past variations in the Alaska Coastal Current is needed. However, continuous long-term high-resolution observations of the Alaska Coastal Current have only been available for the last 2 decades. In this study, specimens of the long-lived crustose coralline alga Clathromorphum nereostratum were collected within the pathway of the Alaska Coastal Current and utilized as archives of past temperature and salinity. Results indicate that coralline algal Mg/Ca ratios provide a 60 year record of sea surface temperatures and track changes of the Pacific Decadal Oscillation, a pattern of decadal-to-multidecadal ocean-atmosphere climate variability centered over the North Pacific. Algal Ba/Ca ratios (used as indicators of coastal freshwater runoff) are inversely correlated to instrumentally measured Alaska Coastal Current salinity and record the period of freshening from 2001 to 2006. Similar multiyear freshening events are not evident in the earlier portion of the 60 year Ba/Ca record. This suggests that the 21st century freshening of the Alaska Coastal Current is a unique feature related to increasing glacial melt and precipitation on mainland Alaska.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A little-known, but ecologically important non-geniculate coralline, Lithothamnion prolifer, is recorded from a number of tropical Indo-Pacific sites, including Fiji, Australia, Kiribati and Indonesia. The species occurs primarily on vertical walls of caves and overhangs in Fiji and Australia, but was also found as rhodoliths in Kiribati. Lithothamnion prolifer is characterized by the combination of characters which follow. The thallus is extremely glossy, smooth, and rosy coloured. Thalli usually produce complanate protuberances, but protuberances become terete when growing on well lit, horizontal substrata, when unattached, or when growing on loose substrata. Conceptacles occur mainly on the tips of protuberances, and tetra/bisporangial conceptacles are large (to 1300 mu m external diameter, with chambers up to 1100 mu m diameter). The tetra/bisporangial conceptacles are flush or only slightly raised, and often extensive and irregularly shaped (resembling small sori). They lack a raised rim, and have flattened pore plates. The rosette cells surrounding the tetra/bisporangial pore appear somewhat sunken below the surrounding roof cells in SEM, and the cells of filaments lining the pore canals of tetra/bisporangial conceptacles do not differ from the cells of filaments making up the rest of the roof. Old conceptacles persist and become buried in the thallus, and are then usually completely filled in by irregularly arranged calcified cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Morphological variation within and among many species of algae show correlated life history traits. The trade-offs of Life history traits among different morphs are presumed to be determined by morphology. Form-function hypotheses also predict that algae of different morphological groups exhibit different tolerances to physiological stress, whereas algae within a morphological group respond similarly to stress. We tested this hypothesis by comparing photosynthetic and respiratory responses to variation in season, light, temperature, desiccation and freezing among the morphologically similar fronds of Chondrus crispus and Mastocarpus stellatus and the alternate stage crust of M. stellatus. Physiological differences between fronds of the 2 species and crusts and fronds were consistent with their patterns of distribution and abundance in the intertidal zone. However, there was no clear relationship between algal morphology and physiological response to environmental variation. These results suggest that among macroalgae the correlation between Life history traits and morphology is not always causal. Rather, the link between life history traits and morphology is constrained by the extent to which physiological characteristics codetermine these features.