3 resultados para chelators
em DigitalCommons - The University of Maine Research
Resumo:
Bacterial production assays (thymidine incorporation rates) were used to evaluate the activity of heterotrophic bacteria at the chemocline region in both the East (ELB) and West (WLB) Lobes of permanently ice-covered Lake Bonney, in the Taylor Valley of Antarctica. The magnitude of activity varied dramatically within the depth interval of 1 to 2 m from moderate to very low levels below the chemocline, especially in the East Lobe, where chemical distributions indicate the absence of a normally functioning nitrogen cycle. Several parameters (e.g. addition of nutrients or chelators, dilution) were manipulated in incubation experiments in order to identify factors that would enhance activity in the suboxic deep waters of the East Lobe. Activity, in terms of thymidine incorporation, was consistently detected in the deep-water communities, implying that, although the water may be 'toxic', the cells remain viable. None of the treatments resulted in consistent enhancement of thymidine incorporation rates in samples from below the chemocline. Bacterial populations above the chemocline appear to be phosphorus-limited. The nature of the limitation, toxicity or inhibition that limits bacterial activity in the suboxic waters has not been identified.
Resumo:
The distribution of denitrification was investigated in the hypolimnion of the east and west lobes of permanently ice-covered Lake Bonney, Taylor Valley, Antarctica. Anomalously high concentrations of dissolved inorganic nitrogen (DIN; nitrate, nitrite, ammonium and nitrous oxide) in the oxygen-depleted hypolimnion of the east lobe of the Lake implied that denitrification is or was active in the west, but not in the east lobe. While previous investigations reported no detectable denitrification in the east lobe, we measured active denitrification in samples from both the east and west lobes. In the west lobe, measured denitrification rates exhibited a maximum at the depth of the chemocline and denitrification was not detectable in either the oxic surface waters or in the deep water where nitrate was absent. In the east lobe, denitrification was detected below the chemocline, at the depths where ammonium, nitrate, nitrite and nitrous oxide are all present at anomalously high levels, Trace metal availability was manipulated in incubation experiments in order to determine whether trace metal toxicity in the east lobe could explain the difference in nitrogen cycling between the 2 lobes. There were no consistent stimulatory effects of metal chelators or nutrient addition on the rate of denitrification in either lobe, so that the mechanisms underlying the unusual N cycle of the east lobe remain unknown. We conclude that all the ingredients necessary to allow denitrification to occur are present in the east lobe. However, even though denitrification could be detected under certain conditions in incubations, denitrification is inhibited under the in situ conditions of the lake.
Resumo:
The overall objective of this thesis was to gain further understanding of the non-enzymatic mechanisms involved in brown-rot wood decay, especially the role of pH, oxalic acid, and low molecular catecholate compounds on the dissolution and reduction of iron, and the formation of reactive oxygen species. Another focus of this study will be the potential application of a biomimetic free radical generating system inspired from fungi wood decay process, especially the non-enzymatic mechanism. The possible pathways of iron uptake and iron redox cycling in non-enzymatic brown-rot decay were investigated in this study. UV-Vis spectroscopy and HPLC were employed to study the kinetics and pathways of the interaction between iron and model catecholate compounds under different pH and chelator/iron molar ratio conditions. Iron chelation and reduction during early non-enzymatic wood decay processes have been studied in this thesis. The results indicate that the effects of the chelator/iron ratio, the pH, and other reaction parameters on the hydroxyl radical generation in a Fenton type system can be determined using ESR spin-trapping techniques. Data also support the hypothesis that superoxide radicals are involved in chelator-mediated Fenton processes. The mechanisms involved in free radical activation of Thermal Mechanical Pulp fibers were investigated. The activation of TMP fibers was evaluated by ESR measurement of free phenoxy radical generation on solid fibers. The results indicate that low molecular weight chelators can improve Fenton reactions, thus in turn stimulating the free radical activation of TMP fibers. A mediated Fenton system was evaluated for decolorization of several types of dyes. The result shows that the Fenton system mediated by a catecholate-type chelator effectively reduced the color of a diluted solution of synthetic dyes after 90 minutes of treatment at room temperature. The results show that compared to a neat Fenton process, the mediated Fenton decolorization process increased the production, and therefore the effective longevity, of hydroxyl radical species to increase the decolorization efficiency.