2 resultados para browser plug-in

em DigitalCommons - The University of Maine Research


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple technique was developed to measure the bacteriolytic activities of the digestive fluids of the deposit-feeding polychaete Arenicola marina. Lysis of a cultured environmental isolate, incubated with extracts of gut luminal contents, was monitored spectrophotometrically. Concurrent direct counts were used to verify cell lysis. The ability of extracts from 8 longitudinal sections of the gut to lyse the bacterium was monitored. The digestive ceca, anterior stomach, and posterior stomach regions exhibited high lytic activities, whereas bacteriolytic activities in all other regions of the gut were negligible. Similarly, extracts of surface sediments and fecal castings showed negligible lytic capabilities. The sharply limited distribution of lytic activity implicates the ceca as the source of bacteriolytic agent and suggests a true plug-flow system, with little axial mixing. Questions regarding the fate of lytic agents, which disappear abruptly posterior to the stomach, remain unanswered. Localization of lysis in the gut coupled with estimates of gut residence time permit the calculation that ingested bacteria are exposed to strong lytic activity for approximately 20 min. Incubation of in situ sediment samples with gut fluids corroborates the distributional findings of the in vitro work although the efficiency of lysis is much reduced, possibly due to exopolymer capsules and slimes of natural sedimentary bacteria. Cross-phyletic comparisons of bacteriolytic activities reveal both qualitative and quantitative differences. Much less demarcation of lytic activity is observed in the guts of a holothuroid (Caudina arenata) and a hemichordate (Stereobalanus canadensis), with a pattern more similar to that of A. marina observed in another polychaete, Amphitrite johnstoni. Quantitatively, the polychaetes showed higher levels of activity with rates in A. marina exceeding those of the hemichordate and holothuroid by more than 10-fold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animal guts have been idealized as axially uniform plug-flow reactors (PFRs) without significant axial mixing or as combinations in series of such PFRs with other reactor types. To relax these often unrealistic assumptions and to provide a means for relaxing others, I approximated an animal gut as a series of n continuously stirred tank reactors (CSTRs) and examined its performance as a Function of n. For the digestion problem of hydrolysis and absorption in series, I suggest as a first approximation that a tubular gut of length L and diameter D comprises n=L/D tanks in series. For n greater than or equal to 10, there is little difference between performance of the nCSTR model and an ideal PFR in the coupled tasks of hydrolysis and absorption. Relatively thinner and longer guts, characteristic of animals feeding on poorer forage, prove more efficient in both conversion and absorption by restricting axial mixing, in the same total volume, they also give a higher rate of absorption. I then asked how a fixed number of absorptive sites should be distributed among the n compartments. Absorption rate generally is maximized when absorbers are concentrated in the hindmost few compartments, but high food quality or suboptimal ingestion rates decrease the advantage of highly concentrated absorbers. This modeling approach connects gut function and structure at multiple scales and can be extended to include other nonideal reactor behaviors observed in real animals.