3 resultados para application volume
em DigitalCommons - The University of Maine Research
Resumo:
The presence of surface meltwater on ice caps and ice sheets is an important glaciological and climatological characteristic. We describe an algorithm for estimating the depth and hence volume of surface melt ponds using multispectral ASTER satellite imagery. The method relies on reasonable assumptions about the albedo of the bottom surface of the ponds and the optical attenuation characteristics of the ponded meltwater. We apply the technique to sequences of satellite imagery acquired over the western margin of the Greenland Ice Sheet to derive changes in melt pond extent and volume during the period 2001 - 2004. Results show large intra- and interannual changes in ponded water volumes, and large volumes of liquid water stored in extensive slush zones.
Resumo:
The coastal portions of Kangerdlugssuaq and Helheim glaciers in southeast Greenland lost at least 51 +/- 8 km(-3) yr(-1) of ice between 2001-2006 due to thinning and retreat, according to an analysis of sequential digital elevation models (DEMs) derived from stereo ASTER satellite imagery. The dominant contribution to this ice loss was dynamic thinning caused by the acceleration in flow of both glaciers. Peak rates of change, including thinning rates of similar to 90 m yr(-1), coincided with the rapid increases in flow speed. Extrapolation of the measured data to the ice divides yields an estimated combined catchment volume loss of similar to 122 +/- 30 km(-3) yr(-1), which accounts for half the total mass loss from the ice sheet reported in recent studies. These catchment-wide volume losses contributed similar to 0.31 +/- 0.07 mm yr(-1) to global sea level rise over the 5-year observation period with the coastal regions alone contributing at least 0.1 +/- 0.02 mm yr(-1).
Resumo:
As an initial step in establishing mechanistic relationships between environmental variability and recruitment in Atlantic cod Gadhus morhua along the coast of the western Gulf of Maine, we assessed transport success of larvae from major spawning grounds to nursery areas with particle tracking using the unstructured grid model FVCOM (finite volume coastal ocean model). In coastal areas, dispersal of early planktonic life stages of fish and invertebrate species is highly dependent on the regional dynamics and its variability, which has to be captured by our models. With state-of-the-art forcing for the year 1995, we evaluate the sensitivity of particle dispersal to the timing and location of spawning, the spatial and temporal resolution of the model, and the vertical mixing scheme. A 3 d frequency for the release of particles is necessary to capture the effect of the circulation variability into an averaged dispersal pattern of the spawning season. The analysis of sensitivity to model setup showed that a higher resolution mesh, tidal forcing, and current variability do not change the general pattern of connectivity, but do tend to increase within-site retention. Our results indicate strong downstream connectivity among spawning grounds and higher chances for successful transport from spawning areas closer to the coast. The model run for January egg release indicates 1 to 19 % within-spawning ground retention of initial particles, which may be sufficient to sustain local populations. A systematic sensitivity analysis still needs to be conducted to determine the minimum mesh and forcing resolution that adequately resolves the complex dynamics of the western Gulf of Maine. Other sources of variability, i.e. large-scale upstream forcing and the biological environment, also need to be considered in future studies of the interannual variability in transport and survival of the early life stages of cod.