7 resultados para Wilson, James P
em DigitalCommons - The University of Maine Research
Resumo:
The sustainability of regional development can be usefully explored through several different lenses. In situations in which uncertainties and change are key features of the ecological landscape and social organization, critical factors for sustainability are resilience, the capacity to cope and adapt, and the conservation of sources of innovation and renewal. However, interventions in social-ecological systems with the aim of altering resilience immediately confront issues of governance. Who decides what should be made resilient to what? For whom is resilience to be managed, and for what purpose? In this paper we draw on the insights from a diverse set of case studies from around the world in which members of the Resilience Alliance have observed or engaged with sustainability problems at regional scales. Our central question is: How do certain attributes of governance function in society to enhance the capacity to manage resilience? Three specific propositions were explored: ( 1) participation builds trust, and deliberation leads to the shared understanding needed to mobilize and self-organize; ( 2) polycentric and multilayered institutions improve the fit between knowledge, action, and social-ecological contexts in ways that allow societies to respond more adaptively at appropriate levels; and ( 3) accountable authorities that also pursue just distributions of benefits and involuntary risks enhance the adaptive capacity of vulnerable groups and society as a whole. Some support was found for parts of all three propositions. In exploring the sustainability of regional social-ecological systems, we are usually faced with a set of ecosystem goods and services that interact with a collection of users with different technologies, interests, and levels of power. In this situation in our roles as analysts, facilitators, change agents, or stakeholders, we not only need to ask: The resilience of what, to what? We must also ask: For whom?
Resumo:
The sustainability of regional development can be usefully explored through several different lenses. In situations in which uncertainties and change are key features of the ecological landscape and social organization, critical factors for sustainability are resilience, the capacity to cope and adapt, and the conservation of sources of innovation and renewal. However, interventions in social-ecological systems with the aim of altering resilience immediately confront issues of governance. Who decides what should be made resilient to what? For whom is resilience to be managed, and for what purpose? In this paper we draw on the insights from a diverse set of case studies from around the world in which members of the Resilience Alliance have observed or engaged with sustainability problems at regional scales. Our central question is: How do certain attributes of governance function in society to enhance the capacity to manage resilience? Three specific propositions were explored: ( 1) participation builds trust, and deliberation leads to the shared understanding needed to mobilize and self-organize; ( 2) polycentric and multilayered institutions improve the fit between knowledge, action, and social-ecological contexts in ways that allow societies to respond more adaptively at appropriate levels; and ( 3) accountable authorities that also pursue just distributions of benefits and involuntary risks enhance the adaptive capacity of vulnerable groups and society as a whole. Some support was found for parts of all three propositions. In exploring the sustainability of regional social-ecological systems, we are usually faced with a set of ecosystem goods and services that interact with a collection of users with different technologies, interests, and levels of power. In this situation in our roles as analysts, facilitators, change agents, or stakeholders, we not only need to ask: The resilience of what, to what? We must also ask: For whom?
Resumo:
East Antarctic ice discharged by Byrd Glacier continues as a flowband to the calving front of the Ross Ice Shelf. Flow across the grounding line changes from compressive to extensive as it leaves the fjord through the Transantarctic Mountains occupied by Byrd Glacier. Magnitudes of the longitudinal compressive stress that suppress opening of transverse tensile cracks are calculated for the flowband. As compressive back stresses diminish, initial depths and subsequent growth of these cracks, and their spacing, are calculated using theories of elastic and ductile fracture mechanics. Cracks are initially about one millimeter wide, with approximately 30 in depths and 20 in spacings for a back stress of 83 kPa at a distance of 50 kin beyond the fjord, where floating ice is 600 in thick. When these crevasses penetrate the whole ice thickness, they release tabular icebergs 20 kin to 100 kin wide, spaced parallel to the calving front of the Ross Ice Shelf
Resumo:
A mass balance calculation was made for the floating part of Byrd Glacier, using 1978-79 ice elevation and velocity data, over the 45 km of Byrd Glacier from its grounding line to where it leaves its fjord and merges with the Ross Ice Shelf. Smoothed basal melting rates were relatively uniform over this distance and averaged 12 +/- 2 m yr(-1).
Resumo:
Earth-orbiting satellites can now monitor calving of large icebergs from ice shelves bordering the marine West Antarctic Ice Sheet, and recent calving events have stimulated interest in calving mechanisms. To advance this interest pioneering work in brittle and ductile fracture mechanics is reviewed, leading to a new application to calving of giant icebergs from Antarctic ice shelves. The aim is to view iceberg calving as more than terminal events for Antarctic ice when glaciologists lose interest. Instead calving launches Antarctic ice into the larger dynamic system of Earth's climate machine. This encourages a holistic approach to glaciology.
Resumo:
Jakobshavn Isbrae is a major ice stream that drains the west-central Greenland ice sheet and becomes afloat in Jakobshavn Isfiord (69degreesN, 49degreesW), where it has maintained the world's fastest-known sustained velocity and calving rate (7 km a(-1)) for at least four decades. The floating portion is approximately 12 km long and 6 km wide. Surface elevations and motion vectors were determined photogrammetrically for about 500 crevasses on the floating ice, and adjacent grounded ice, using aerial photographs obtained 2 weeks apart in July 1985. Surface strain rates were computed from a mesh of 399 quadrilateral elements having velocity measurements at each corner. It is shown that heavy crevassing of floating ice invalidates the assumptions of linear strain theory that (i) surface strain in the floating ice is homogeneous in both space and time, (ii) the squares and products of strain components are nil, and (iii) first- and second-order rotation components are small compared to strain components. Therefore, strain rates and rotation rates were also computed using non-linear strain theory. The percentage difference between computed linear and non-linear second invariants of strain rate per element were greatest (mostly in the range 40-70%) where crevassing is greatest. Isopleths of strain rate parallel and transverse to flow and elevation isopleths relate crevassing to known and inferred pinning points.
Resumo:
This paper considers ocean fisheries as complex adaptive systems and addresses the question of how human institutions might be best matched to their structure and function. Ocean ecosystems operate at multiple scales, but the management of fisheries tends to be aimed at a single species considered at a single broad scale. The paper argues that this mismatch of ecological and management scale makes it difficult to address the fine-scale aspects of ocean ecosystems, and leads to fishing rights and strategies that tend to erode the underlying structure of populations and the system itself. A successful transition to ecosystem-based management will require institutions better able to economize on the acquisition of feedback about the impact of human activities. This is likely to be achieved by multiscale institutions whose organization mirrors the spatial organization of the ecosystem and whose communications occur through a polycentric network. Better feedback will allow the exploration of fine-scale science and the employment of fine-scale fishing restraints, better adapted to the behavior of fish and habitat. The scale and scope of individual fishing rights also needs to be congruent with the spatial structure of the ecosystem. Place-based rights can be expected to create a longer private planning horizon as well as stronger incentives for the private and public acquisition of system relevant knowledge.