2 resultados para Warm-moist weather

em DigitalCommons - The University of Maine Research


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regional climate simulations are conducted using the Polar fifth-generation Pennsylvania State University (PSU)-NCAR Mesoscale Model (MM5) with a 60-km horizontal resolution domain over North America to explore the summer climate of the Last Glacial Maximum (LGM: 21 000 calendar years ago), when much of the continent was covered by the Laurentide Ice Sheet (LIS). Output from a tailored NCAR Community Climate Model version 3 (CCM3) simulation of the LGM climate is used to provide the initial and lateral boundary conditions for Polar MM5. LGM boundary conditions include continental ice sheets, appropriate orbital forcing, reduced CO2 concentration, paleovegetation, modified sea surface temperatures, and lowered sea level. The simulated LGM summer climate is characterized by a pronounced low-level thermal gradient along the southern margin of the LIS resulting from the juxtaposition of the cold ice sheet and adjacent warm ice-free land surface. This sharp thermal gradient anchors the midtropospheric jet stream and facilitates the development of synoptic cyclones that track over the ice sheet, some of which produce copious liquid precipitation along and south of the LIS terminus. Precipitation on the southern margin is orographically enhanced as moist southerly low-level flow (resembling a contemporary, Great Plains low-level jet configuration) in advance of the cyclone is drawn up the ice sheet slope. Composites of wet and dry periods on the LIS southern margin illustrate two distinctly different atmospheric flow regimes. Given the episodic nature of the summer rain events, it may be possible to reconcile the model depiction of wet conditions on the LIS southern margin during the LGM summer with the widely accepted interpretation of aridity across the Great Plains based on geological proxy evidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ships’ protests have been used for centuries as legal documents to record and detail damages and indemnify Captains from fault. We use them in this article, along with data extracted through forensic synoptic analysis (McNally, 1994, 2004) to identify a tropical or subtropical system in the North Atlantic Ocean in 1785. They are shown to be viable sources of meteorological information. By comparing a damaging storm in New England in 1996, which included an offshore tropical system, with one reconstructed in 1785, we demonstrate that the tropical system identified in a ship’s protest played a significant role in the 1785 storm. With both forensic reconstruction and anecdotal evidence, we are able to assess that these storms are remarkably identical. The recurrence rate calculated in previous studies of the 1996 storm is 400–500 years. We suggest that reconstruction of additional years in the 1700s would provide the basis for a reanalysis of recurrence rates, with implications for future insurance and reinsurance rates. The application of the methodology to this new data source can also be used for extension of the hurricane database in the North Atlantic basin, and elsewhere, much further back into history than is currently available.