3 resultados para WAVELET ANALYSIS

em DigitalCommons - The University of Maine Research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wavelet analysis offers an alternative to Fourier based time-series analysis, and is particularly useful when the amplitudes and periods of dominant cycles are time dependent. We analyse climatic records derived from oxygen isotopic ratios of marine sediment cores with modified Morlet wavelets. We use a normalization of the Morlet wavelets which allows direct correspondence with Fourier analysis. This provides a direct view of the oscillations at various frequencies, and illustrates the nature of the time-dependence of the dominant cycles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the California Current System, strong mesoscale variability associated with eddies and meanders of the coastal jet play an important role in the biological productivity of the area. To assess the dominant timescales of variability, a wavelet analysis is applied to almost nine years (October 1997 to July 2006) of 1-km-resolution, 5-day-averaged, Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll a (chl a) concentration data. The dominant periods of chlorophyll variance, and how these change in time, are quantified as a function of distance offshore. The maximum variance in chlorophyll occurs with a period of similar to 100-200 days. A seasonal cycle in the timing of peak variance is revealed, with maxima in spring/summer close to shore (20 km) and in autumn/winter 200 km offshore. Interannual variability in the magnitude of chlorophyll variance shows maxima in 1999, 2001, 2002, and 2005. There is a very strong out-of-phase correspondence between the time series of chlorophyll variance and the Pacific Decadal Oscillation (PDO) index. We hypothesize that positive PDO conditions, which reflect weak winds and poor upwelling conditions, result in reduced mesoscale variability in the coastal region, and a subsequent decrease in chlorophyll variance. Although the chlorophyll variance responds to basin-scale forcing, chlorophyll biomass does not necessarily correspond to the phase of the PDO, suggesting that it is influenced more by local-scale processes. The mesoscale variability in the system may be as important as the chl a biomass in determining the potential productivity of higher trophic levels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The California Current System encompasses a southward flowing current which is perturbed by ubiquitous mesoscale variability. The extent to which latitudinal patterns of physical variability are reflected in the distribution of biological parameters is poorly known. To investigate the latitudinal distribution of chlorophyll variance, a wavelet analysis is applied to nearly 9 years (October 1997 to July 2006) of 1-km-resolution Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll concentration data at 5-day resolution. Peaks in the latitudinal distribution of chlorophyll variance coincide with features of the coastal topography. Maxima in variance are located offshore of Vancouver Island and downstream of Heceta Bank, Cape Blanco, Point Arena, and possibly Point Conception. An analysis of dominant wavelengths in the chlorophyll data reveals a transfer of energy into smaller scales is generated in the vicinity of the coastal capes. The latitudinal distribution of variance in sea level anomaly corresponds closely to the chlorophyll variance in the nearshore region (<100 km offshore), suggesting that the same processes determine the distribution of both. Farther offshore, there is no correspondence between latitudinal patterns of sea level anomaly and chlorophyll variance. This likely represents a transition from physical to biological control of the phytoplankton distribution.