8 resultados para Urbanization -- California.
em DigitalCommons - The University of Maine Research
Resumo:
Sanidine separates from pumice of the early Miocene Peach Springs Tuff are concordantly dated at 18.5 ± 0.2 Ma by two isotopic techniques. The Peach Springs Tuff is the only known unit that can be correlated between isolated outcrops of Miocene strata from the central Mojave Desert of southeastern California to the western Colorado Plateau in Arizona, across five structural provinces, a distance of 350 km. Thus the age of the Peach Springs Tuff is important to structural and paleogeographic reconstructions of a large region. Biotite and sanidine separates from bulk samples of the Peach Springs Tuff from zones of welding and vapor-phase alteration have not produced consistent ages by the K-Ar method. Published ages of mineral separates from 17 localities ranged from 16.2 to 20.5 Ma. Discordant 40Ar/39Ar incremental release spectra were obtained for one biotite and two of the sanidine separates. Ages that correspond to the last gas increments are as old as 27 Ma. The 40Ar/39Ar incremental release determinations on sanidine separated from blocks of Peach Springs Tuff pumice yield ages of 18.3 ± 0.3 and 18.6 ± 0.4 Ma. Laser fusion measurements yield a mean age of 18.51 ± 0.10. The results suggest that sanidine and biotite K-Ar ages older than about 18.5 Ma are due to inherited Ar from pre-Tertiary contaminants, which likely were incorporated into the tuff during deposition. Sanidine K-Ar ages younger than 18 Ma probably indicate incomplete extraction of radiogenic 40Ar, whereas laser fusion dates of biotite and hornblende younger than 18 Ma likely are due to postdepositional alteration. Laser fusion ages as high as 19.01 Ma on biotite grains from pumice suggest that minerals from pre-Tertiary country rocks also were incorporated in the magma chamber.
Resumo:
Unroofing of the Black Mountains, Death Valley, California, has resulted in the exposure of 1.7 Ga crystalline basement, late Precambrian amphibolite facies metasedimentary rocks, and a Tertiary magmatic complex. The Ar-40/Ar-39 cooling ages, obtained from samples collected across the entire length of the range (>55 km), combined with geobarometric results from synextensional intrusions, provide time-depth constraints on the Miocene intrusive history and extensional unroofing of the Black Mountains. Data from the southeastern Black Mountains and adjacent Greenwater Range suggest unroofing from shallow depths between 9 and 10 Ma. To the northwest in the crystalline core of the range, biotite plateau ages from approximately 13 to 6.8 Ma from rocks making up the Death Valley turtlebacks indicate a midcrustal residence (with temperatures >300-degrees-C) prior to extensional unroofing. Biotite Ar-40/Ar-39 ages from both Precambrian basement and Tertiary plutons reveal a diachronous cooling pattern of decreasing ages toward the northwest, subparallel to the regional extension direction. Diachronous cooling was accompanied by dike intrusion which also decreases in age toward the northwest. The cooling age pattern and geobarometric constraints in crystalline rocks of the Black Mountains suggest denudation of 10-15 km along a northwest directed detachment system, consistent with regional reconstructions of Tertiary extension and with unroofing of a northwest deepening crustal section. Mica cooling ages that deviate from the northwest younging trend are consistent with northwestward transport of rocks initially at shallower crustal levels onto deeper levels along splays of the detachment. The well-known Amargosa chaos and perhaps the Badwater turtleback are examples of this "splaying" process. Considering the current distance of the structurally deepest samples away from moderately to steeply east tilted Tertiary strata in the southeastern Black Mountains, these data indicate an average initial dip of the detachment system of the order of 20-degrees, similar to that determined for detachment faults in west central Arizona and southeastern California. Beginning with an initially listric geometry, a pattern of footwall unroofing accompanied by dike intrusion progress northwestward. This pattern may be explained by a model where migration of footwall flexures occur below a scoop-shaped banging wall block. One consequence of this model is that gently dipping ductile fabrics developed in the middle crust steepen in the upper crust during unloading. This process resolves the low initial dips obtained here with mapping which suggests transport of the upper plate on moderately to steeply dipping surfaces in the middle and upper crust.
Resumo:
Physical forcing and biological response within the California Current System (CCS) are highly variable over a wide range of scales. Satellite remote sensing offers the only feasible means of quantifying this variability over the full extent of the CCS. Using six years (1997-2003) of daily SST and chlorophyll imagery, we map the spatial dependence of dominant temporal variability at resolutions sufficient to identify recurrent mesoscale circulation and local pattern associated with coastal topography. Here we describe mean seasonal cycles and interannual variation; intraseasonal variability is left to a companion paper ( K. R. Legaard and A. C. Thomas, manuscript in preparation, 2006). Coastal upwelling dictates seasonality along north-central California, where weak cycles of SST fluctuate between spring minima and late summer maxima and chlorophyll peaks in early summer. Off northern California, chlorophyll maxima are bounded offshore by the seasonally recurrent upwelling jet. Seasonal cycles differ across higher latitudes and in the midlatitude Southern California Bight, where upwelling winds are less vigorous and/or persistent. Seasonality along south-central Baja is strongly affected by processes other than upwelling, despite year-round upwelling-favorable winds. Interannual variation is generally dominated by El Nino and La Nina conditions. Interannual SST variance is greatest along south-central Baja, although interannual variability constitutes a greater fraction of total variance inshore along southern Oregon and much of California. Patterns of interannual chlorophyll variance are consistent with dominant forcing through the widespread depression and elevation of the nutricline during El Nino and La Nina, respectively. Interannual variability constitutes a greater fraction of total chlorophyll variance offshore.
Resumo:
Satellite-derived data provide the temporal means and seasonal and nonseasonal variability of four physical and biological parameters off Oregon and Washington ( 41 degrees - 48.5 degrees N). Eight years of data ( 1998 - 2005) are available for surface chlorophyll concentrations, sea surface temperature ( SST), and sea surface height, while six years of data ( 2000 - 2005) are available for surface wind stress. Strong cross-shelf and alongshore variability is apparent in the temporal mean and seasonal climatology of all four variables. Two latitudinal regions are identified and separated at 44 degrees - 46 degrees N, where the coastal ocean experiences a change in the direction of the mean alongshore wind stress, is influenced by topographic features, and has differing exposure to the Columbia River Plume. All these factors may play a part in defining the distinct regimes in the northern and southern regions. Nonseasonal signals account for similar to 60 - 75% of the dynamical variables. An empirical orthogonal function analysis shows stronger intra-annual variability for alongshore wind, coastal SST, and surface chlorophyll, with stronger interannual variability for surface height. Interannual variability can be caused by distant forcing from equatorial and basin-scale changes in circulation, or by more localized changes in regional winds, all of which can be found in the time series. Correlations are mostly as expected for upwelling systems on intra-annual timescales. Correlations of the interannual timescales are complicated by residual quasi-annual signals created by changes in the timing and strength of the seasonal cycles. Examination of the interannual time series, however, provides a convincing picture of the covariability of chlorophyll, surface temperature, and surface height, with some evidence of regional wind forcing.
Resumo:
Six years of daily satellite data are used to quantify and map intraseasonal variability of chlorophyll and sea surface temperature (SST) in the California Current. We define intraseasonal variability as temporal variation remaining after removal of interannual variability and stationary seasonal cycles. Semivariograms are used to quantify the temporal structure of residual time series. Empirical orthogonal function (EOF) analyses of semivariograms calculated across the region isolate dominant scales and corresponding spatial patterns of intraseasonal variability. The mode 1 EOFs for both chlorophyll and SST semivariograms indicate a dominant timescale of similar to 60 days. Spatial amplitudes and patterns of intraseasonal variance derived from mode 1 suggest dominant forcing of intraseasonal variability through distortion of large scale chlorophyll and SST gradients by mesoscale circulation. Intraseasonal SST variance is greatest off southern Baja and along southern Oregon and northern California. Chlorophyll variance is greatest over the shelf and slope, with elevated values closely confined to the Baja shelf and extending farthest from shore off California and the Pacific Northwest. Intraseasonal contributions to total SST variability are strongest near upwelling centers off southern Oregon and northern California, where seasonal contributions are weak. Intraseasonal variability accounts for the majority of total chlorophyll variance in most inshore areas save for southern Baja, where seasonal cycles dominate. Contributions of higher EOF modes to semivariogram structure indicate the degree to which intraseasonal variability is shifted to shorter timescales in certain areas. Comparisons of satellite-derived SST semivariograms to those calculated from co-located and concurrent buoy SST time series show similar features.
Resumo:
In the California Current System, strong mesoscale variability associated with eddies and meanders of the coastal jet play an important role in the biological productivity of the area. To assess the dominant timescales of variability, a wavelet analysis is applied to almost nine years (October 1997 to July 2006) of 1-km-resolution, 5-day-averaged, Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll a (chl a) concentration data. The dominant periods of chlorophyll variance, and how these change in time, are quantified as a function of distance offshore. The maximum variance in chlorophyll occurs with a period of similar to 100-200 days. A seasonal cycle in the timing of peak variance is revealed, with maxima in spring/summer close to shore (20 km) and in autumn/winter 200 km offshore. Interannual variability in the magnitude of chlorophyll variance shows maxima in 1999, 2001, 2002, and 2005. There is a very strong out-of-phase correspondence between the time series of chlorophyll variance and the Pacific Decadal Oscillation (PDO) index. We hypothesize that positive PDO conditions, which reflect weak winds and poor upwelling conditions, result in reduced mesoscale variability in the coastal region, and a subsequent decrease in chlorophyll variance. Although the chlorophyll variance responds to basin-scale forcing, chlorophyll biomass does not necessarily correspond to the phase of the PDO, suggesting that it is influenced more by local-scale processes. The mesoscale variability in the system may be as important as the chl a biomass in determining the potential productivity of higher trophic levels.
Resumo:
In the California Current System the spring transition from poleward to equatorward alongshore wind stress heralds the beginning of upwelling-favorable conditions. The phytoplankton response to this transition is investigated using 8 years ( 1998-2005) of daily, 4-km resolution, Sea-viewing Wide Field of view Sensor ( SeaWiFS) chlorophyll a concentration data. Cluster analysis of the chlorophyll a time series at each location is used to separate the inshore upwelling region from offshore and oligotrophic areas. An objective method for estimating the timing of bloom initiation is used to construct a map of the mean bloom start date. Interannual variability in bloom timing and magnitude is investigated in four regions: 45 degrees N - 50 degrees N, 40 degrees N - 45 degrees N, 35 degrees N - 40 degrees N and 20 degrees N - 35 degrees N. Daily satellite derived wind data ( QuikSCAT) allow the timing of the first episode of persistently upwelling favorable winds to be estimated. Bloom initiation generally coincides with the onset of upwelling winds ( +/- 15 days). South of similar to 35 degrees N, where winds are southward year-round, the timing of increased chlorophyll concentration corresponds closely to timing of the seasonal increase in upwelling intensity. A 1-D model and satellite derived photosynthetically available radiation data are used to estimate time series of depth- averaged irradiance. In the far north of the region (> 46 degrees N) light is shown to limit phytoplankton growth in early spring. In 2005 the spring bloom in the northern regions (> 35 degrees N) had a "false start''. A sharp increase in chl a in February quickly receded, and a sustained increase in biomass was delayed until July. We hypothesize that this resulted in a mismatch in timing of food availability to higher trophic levels.
Resumo:
The California Current System encompasses a southward flowing current which is perturbed by ubiquitous mesoscale variability. The extent to which latitudinal patterns of physical variability are reflected in the distribution of biological parameters is poorly known. To investigate the latitudinal distribution of chlorophyll variance, a wavelet analysis is applied to nearly 9 years (October 1997 to July 2006) of 1-km-resolution Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll concentration data at 5-day resolution. Peaks in the latitudinal distribution of chlorophyll variance coincide with features of the coastal topography. Maxima in variance are located offshore of Vancouver Island and downstream of Heceta Bank, Cape Blanco, Point Arena, and possibly Point Conception. An analysis of dominant wavelengths in the chlorophyll data reveals a transfer of energy into smaller scales is generated in the vicinity of the coastal capes. The latitudinal distribution of variance in sea level anomaly corresponds closely to the chlorophyll variance in the nearshore region (<100 km offshore), suggesting that the same processes determine the distribution of both. Farther offshore, there is no correspondence between latitudinal patterns of sea level anomaly and chlorophyll variance. This likely represents a transition from physical to biological control of the phytoplankton distribution.