2 resultados para Twentieth-century literature

em DigitalCommons - The University of Maine Research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An NH4+ record covering the period A.D. 1845-1997 was reconstructed using an 80.4 m ice core from East Rongbuk Glacier at an elevation of 6450 m on the northern slope of Mount Everest. Variations in NH4+ are characterized by a dramatic increase since the 1950s. The highest NH4+ concentrations occur in the 1980s. They are about twofold more than those in the first half of twentieth century. Empirical orthogonal function (EOF) analysis on the eight major ion (Na+,K+,Mg2+,NH4+,Ca2+,NO3-,SO42- and Cl-) series from this core indicates that NH4+ is loaded mainly on EOF3 (60% of NH4+ variance), suggesting that NH4+ has a unique signature. Instrumental sea level pressure (SLP) and regional temperatures are used to explore the relationship between NH4+ variations and both atmospheric circulation and natural source strength over Asia. Higher NH4+ concentrations are associated with an enhanced winter Mongolian High and a deepened summer Mongolian Low. A positive relationship also exists between NH4+ concentrations and regional temperature changes of the GIS Box 36 (Indian subcontinent), indicating that an increase in temperature may contribute to the strengthening of natural ammonia emissions (e. g., from plants and soils). A close positive correlation between NH4+ and acidic species (SO42- plus NO3-) concentrations suggests that a portion of the increase in NH4+ concentrations could be contributed by enhanced atmospheric acidification. Anthropogenic ammonia emissions from enhanced agricultural activities and energy consumption over Asia in concert with population increase since the 1950s appear also to be a significant factor in the dramatic increase of NH4+ concentrations during the last few decades.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxygen isotopic composition and Mg/Ca ratios in the skeletons of long-lived coralline algae record ambient seawater temperature over time. Similarly, the carbon isotopic composition in the skeletons record delta(13)C values of ambient seawater dissolved inorganic carbon. Here, we measured delta(13)C in the coralline alga Clathromorphum nereostratum to test the feasibility of reconstructing the intrusion of anthropogenic CO(2) into the northern North Pacific Ocean and Bering Sea. The delta(13)C was measured in the high Mgcalcite skeleton of three C. nereostratum specimens from two islands 500 km apart in the Aleutian archipelago. In the records spanning 1887 to 2003, the average decadal rate of decline in delta(13)C values increased from 0.03% yr(-1) in the 1960s to 0.095% yr(-1) in the 1990s, which was higher than expected due to solely the delta(13)C-Suess effect. Deeper water in this region exhibits higher concentrations of CO(2) and low delta(13)C values. Transport of deeper water into surface water (i.e., upwelling) increases when the Aleutian Low is intensified. We hypothesized that the acceleration of the delta(13)C decline may result from increased upwelling from the 1960s to 1990s, which in turn was driven by increased intensity of the Aleutian Low. Detrended delta(13)C records also varied on 4-7 year and bidecadal timescales supporting an atmospheric teleconnection of tropical climate patterns to the northern North Pacific Ocean and Bering Sea manifested as changes in upwelling.