2 resultados para Translation and rotation

em DigitalCommons - The University of Maine Research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bilingual children face a variety of challenges that their monolingual peers do not. For instance, switching between languages requires the phonological translation of proper names, a skill that requires mapping the phonemic units of one language onto the phonemic units of the other. Proficiency of phonological awareness has been linked to reading success, but little information is available about phonological awareness across multiple phonologies. Furthermore, the relationship between this kind of phonological awareness and reading has never been addressed. The current study investigated phonological translation using a task designed to measure children's ability to map one phonological system onto another. A total of 425 kindergarten and second grade monolingual and bilingual students were evaluated. The results suggest that monolinguals generally performed poorly. Bilinguals translated real names more accurately than fictitious names, in both directions. Correlations between phonological translation and measures of reading ability were moderate, but reliable. Phonological translation is proposed as a tool with which to evaluate phonological awareness through the perspective of children who live with two languages and two attendant phonemic systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Jakobshavn Isbrae is a major ice stream that drains the west-central Greenland ice sheet and becomes afloat in Jakobshavn Isfiord (69degreesN, 49degreesW), where it has maintained the world's fastest-known sustained velocity and calving rate (7 km a(-1)) for at least four decades. The floating portion is approximately 12 km long and 6 km wide. Surface elevations and motion vectors were determined photogrammetrically for about 500 crevasses on the floating ice, and adjacent grounded ice, using aerial photographs obtained 2 weeks apart in July 1985. Surface strain rates were computed from a mesh of 399 quadrilateral elements having velocity measurements at each corner. It is shown that heavy crevassing of floating ice invalidates the assumptions of linear strain theory that (i) surface strain in the floating ice is homogeneous in both space and time, (ii) the squares and products of strain components are nil, and (iii) first- and second-order rotation components are small compared to strain components. Therefore, strain rates and rotation rates were also computed using non-linear strain theory. The percentage difference between computed linear and non-linear second invariants of strain rate per element were greatest (mostly in the range 40-70%) where crevassing is greatest. Isopleths of strain rate parallel and transverse to flow and elevation isopleths relate crevassing to known and inferred pinning points.