3 resultados para Time in the peak

em DigitalCommons - The University of Maine Research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Larval development time is a critical factor in assessing the potential for larval transport, mortality. and subsequently, the connectivity of marine populations through larval exchange. Most estimates of larval duration are based on laboratory studies and may not reflect development times in nature. For larvae of the American lobster (Homarus americanus), temperature-dependent development times have been established in previous laboratory studies. Here, we used the timing of seasonal abundance curves for newly hatched larvae (stage 1) and the final plankonic instar (postlarva), coupled with a model of temperature-dependent development to assess development time in the field. We were unable to reproduce the timing of the seasonal abundance curves using laboratory development rates in our model. Our results suggest that larval development in situ may be twice as fast as reported laboratory rates. This will result in reduced estimates of larval transport potential, and increased estimates of instantaneous mortality rate and production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the California Current System, strong mesoscale variability associated with eddies and meanders of the coastal jet play an important role in the biological productivity of the area. To assess the dominant timescales of variability, a wavelet analysis is applied to almost nine years (October 1997 to July 2006) of 1-km-resolution, 5-day-averaged, Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll a (chl a) concentration data. The dominant periods of chlorophyll variance, and how these change in time, are quantified as a function of distance offshore. The maximum variance in chlorophyll occurs with a period of similar to 100-200 days. A seasonal cycle in the timing of peak variance is revealed, with maxima in spring/summer close to shore (20 km) and in autumn/winter 200 km offshore. Interannual variability in the magnitude of chlorophyll variance shows maxima in 1999, 2001, 2002, and 2005. There is a very strong out-of-phase correspondence between the time series of chlorophyll variance and the Pacific Decadal Oscillation (PDO) index. We hypothesize that positive PDO conditions, which reflect weak winds and poor upwelling conditions, result in reduced mesoscale variability in the coastal region, and a subsequent decrease in chlorophyll variance. Although the chlorophyll variance responds to basin-scale forcing, chlorophyll biomass does not necessarily correspond to the phase of the PDO, suggesting that it is influenced more by local-scale processes. The mesoscale variability in the system may be as important as the chl a biomass in determining the potential productivity of higher trophic levels.