3 resultados para Thermal structure in the sea
em DigitalCommons - The University of Maine Research
Resumo:
Thermal convection in the Antarctic and Greenland ice sheets has been dismissed on the grounds that radio-echo stratigraphy is undisturbed for long distances. However, the undisturbed stratigraphy lies, for the most part, above the density inversion in polar ice sheets and therefore does not disprove convection. An echo-free zone is widespread below the density inversion, yet nobody has cited this as a strong indication that convection is indeed present at d�pth. A generalized Rayleigh criterion for thermal convection in e1astic-viscoplastic polycrystalline solids heated from below is developed and applied to ice-sheet convection. An infinite Rayleigh number at the onset of primary creep decreases with time and becomes constant when secondary creep dominates, suggesting that any thermal buoyancy stress can initiate convection but convection cannot be sustained below a buoyancy stress of about 3 kPa. An analysis of the temperature profile down the Byrd Station core hole suggests that about 1000 m of ice below the density inversion will sustain convection. Creep along the Byrd Station strain network, radar sounding in East Antarctica, and seismic sounding in West Antarctica are examined for evidence of convective creep superimposed on advective creep. It is concluded that the evidence for convection is there, if we look for it with the intention offinding it.
Resumo:
Catches of leptocephali of shelf and slope marine eels of the Chlopsidae, Congridae, Moringuidae, Muraenidae, and Ophichthidae collected during a survey in the southwestern Sargasso Sea in late September and early October 1984 were analyzed to learn about their reproductive ecology and larval transport. Sampling along a transect from the Florida Current (FC) out across the southwestern Sargasso Sea and in the Northwest Providence Channel (NWPC) of the Northern Bahamas enabled the evaluation of the larval distributions, abundances and size ranges, regional assemblage structure, and the apparent spawning areas of these marine eels. Distinctly different assemblages observed in the FC and NWPC included the congrid genera Heteroconger, Paraconger, Uroconger, and many ophichthid species, which were rare or absent offshore. Other taxa of congrids, chlopsids, muraenids and moringuids were present in all areas, but the smallest specimens of most taxa were only caught at the NWPC or FC stations. Multivariate analyses reflected higher richness and abundance in the FC and NWPC and also similar species compositions in offshore areas. The patterns of distribution of these leptocephali differed from those of anguillid, nettastomatid, and mesopelagic eel leptocephali collected in the same survey. These findings support the hypothesis that most taxa of marine eels spawn close to their adult habitats, and indicate that despite high biodiversity of marine eels in the Northern Bahamas, only some species of leptocephali appear to get transported far offshore by ocean currents.
Resumo:
Six years of daily satellite data are used to quantify and map intraseasonal variability of chlorophyll and sea surface temperature (SST) in the California Current. We define intraseasonal variability as temporal variation remaining after removal of interannual variability and stationary seasonal cycles. Semivariograms are used to quantify the temporal structure of residual time series. Empirical orthogonal function (EOF) analyses of semivariograms calculated across the region isolate dominant scales and corresponding spatial patterns of intraseasonal variability. The mode 1 EOFs for both chlorophyll and SST semivariograms indicate a dominant timescale of similar to 60 days. Spatial amplitudes and patterns of intraseasonal variance derived from mode 1 suggest dominant forcing of intraseasonal variability through distortion of large scale chlorophyll and SST gradients by mesoscale circulation. Intraseasonal SST variance is greatest off southern Baja and along southern Oregon and northern California. Chlorophyll variance is greatest over the shelf and slope, with elevated values closely confined to the Baja shelf and extending farthest from shore off California and the Pacific Northwest. Intraseasonal contributions to total SST variability are strongest near upwelling centers off southern Oregon and northern California, where seasonal contributions are weak. Intraseasonal variability accounts for the majority of total chlorophyll variance in most inshore areas save for southern Baja, where seasonal cycles dominate. Contributions of higher EOF modes to semivariogram structure indicate the degree to which intraseasonal variability is shifted to shorter timescales in certain areas. Comparisons of satellite-derived SST semivariograms to those calculated from co-located and concurrent buoy SST time series show similar features.