5 resultados para Surface Organometallic Chemistry on Metals
em DigitalCommons - The University of Maine Research
Resumo:
Abundance of the Ommastrephes bartramii winter-spring cohort fluctuated greatly from 1995 to 2004. To understand how abundance was influenced by sea surface conditions, we examined the variations in the proportion of thermal habitats with favourable sea surface temperature (SST). The SST data of both the spawning and feeding grounds were used to calculate the monthly proportion of favourable-SST areas (PFSSTA). Catch per fishing day per fishing boat (catch per unit effort, CPUE) of the Chinese mainland squid-jigging fleet was used as squid abundance index. The relationships between CPUE and monthly PFSSTA at spawning and feeding grounds were analyzed, and the relationship between CPUE and selected PFSSTA was quantified with a multiple linear regression model. Results showed that February PFSSTA at the spawning ground and August to November PFSSTA at the feeding ground could account for about 60% of the variability in O. bartramii abundance between 1995 and 2004, that February was the most important period influencing squid recruitment during the spawning season, and that feeding ground PFSSTA during the fishing season would influence CPUE by causing squid to aggregate. Our forecast model was found to perform well when we compared the model-predicted CPUEs and the average CPUEs observed during August to November in 2005 and 2006 from the Chinese squid-jigging fishery.
Resumo:
Hydrology has been suggested as the mechanism controlling vegetation and related surficial pore-water chemistry in large peatlands. Peatland hydrology influences the carbon dynamics within these large carbon reservoirs and will influence their response to global warming. A geophysical survey was completed in Caribou Bog, a large peatland in Maine, to evaluate peatland stratigraphy and hydrology. Geophysical measurements were integrated with direct measurements of peat stratigraphy from probing, fluid chemistry, and vegetation patterns in the peatland. Consistent with previous field studies, ground-penetrating radar (GPR) was an excellent method for delineating peatland stratigraphy. Prominent reflectors from the peat-lake sediment and lake sediment-mineral soil contacts were precisely recorded up to 8 m deep. Two-dimensional resistivity and induced polarization imaging were used to investigate stratigraphy beneath the mineral soil, beyond the range of GPR. We observe that the peat is chargeable, and that IP imaging is an alternative method for defining peat thickness. The chargeability of peat is attributed to the high surface-charge density on partially decomposed organic matter. The electrical conductivity imaging resolved glaciomarine sediment thickness (a confining layer) and its variability across the basin. Comparison of the bulk conductivity images with peatland vegetation revealed a correlation between confining layer thickness and dominant vegetation type, suggesting that stratigraphy exerts a control on hydrogeology and vegetation distribution within this peatland. Terrain conductivity measured with a Geonics EM31 meter correlated with confining glaciomarine sediment thickness and was an effective method for estimating variability in glaciomarine sediment thickness over approximately 18 km(2). Our understanding of the hydrogeology, stratigraphy, and controls on vegetation growth in this peatland was much enhanced from the geophysical study.
Resumo:
Repeat airborne laser altimeter measurements are used to derive surface elevation changes on parts of Whillans Ice Stream and Ice Stream C, West Antarctica. Elevation changes are converted to estimates of ice equivalent thickness change using local accumulation rates, surface snow densities and vertical bedrock motions. The surveyed portions of two major tributaries of Whillans Ice Stream are found to be thinning almost uniformly at an average rate of similar to 1 m a(-1). Ice Stream C has a complicated elevation-change pattern, but is generally thickening. These results are used to estimate the contribution of each surveyed region to the current rate of global sea-level rise.
Resumo:
Ice thickness, computed within the fjord region of Byrd Glacier on the assumptions that Byrd Glacier is in mass-balance equilibrium and that ice velocity is entirely due to basal sliding, are on average 400 m less than measured ice thicknesses along a radio-echo profile. We consider four explanations for these differences: (1) active glacier ice is separated from a zone of stagnant ice near the base of the glacier by a shear zone at depth; (2) basal melting rates are some 8 m/yr; (3) internal shear occurs with no basal sliding in much of the region above the grounding zone; or (4) internal creep and basal sliding contribute to the flow velocity in varying proportions above the grounding zone. Large gradients of surface strain rate seem to invalidate the first explanation. Computed values of basal shear stress (140 to 200 kPa) provide insufficient frictional heat to melt the ice demanded by the second explanation. Both the third and fourth explanations were examined by making simplifying assumptions that prevented a truly quantitative evaluation of their merit. Nevertheless, there is no escaping the qualitative conclusion that internal shear contributes strongly to surface velocities measured on Byrd Glacier, as is postulated in both these explanations.
Resumo:
The three-dimensional Princeton Ocean Model is used to examine the modification of the Gulf Stream and its meanders by cold air outbreaks. Two types of Gulf Stream meanders are found in the model. Meanders on the shoreward side of the Gulf Stream are baroclinically unstable. They are affected little by the atmospheric forcing because their energy source is stored at the permanent thermocline, well below the influence of the surface forcing. Meanders on the seaward side of the stream are both barotropically and baroclinically unstable. The energy feeding these meanders is stored at the surface front separating the Gulf Stream and the Sargasso Seal which is greatly reduced in case of cold air outbreaks. Thus, meanders there reduce strength and also seem to slow their downstream propagation due to the southward Ekman flow. Heat budget calculations suggest two almost separable processes. The oceanic heal released to the atmosphere during these severe cooling episodes comes almost exclusively from the upper water column. Transport of heat by meanders from the Gulf Stream to the shelf, though it is large, does not disrupt the principal balance. It is balanced nicely with the net heat transport in the downstream direction.