4 resultados para Sulfate de chondroïtine
em DigitalCommons - The University of Maine Research
Resumo:
Chemistry data from 16, 50-115 m deep, sub-annually dated ice cores are used to investigate spatial and temporal concentration variability of sea-salt (ss) SO42- and excess (xs) SO42- over West Antarctica and the South Pole for the last 200 years. Low-elevation ice-core sites in western West Antarctica contain higher concentrations Of SO42- as a result of cyclogenesis over the Ross Ice Shelf and proximity to the Ross Sea Polynya. Linear correlation analysis of 15 West Antarctic ice-core SO42- time series demonstrates that at several sites concentrations Of ssSO(4)(2-) are higher when sea-ice (SIE) extent is greater, and the inverse for XSS04. Concentrations Of XSS04 from the South Pole site (East Antarctica) are associated with SIE from the Weddell region, and West Antarctic XSSO42- concentrations are associated with SIE from the Bellingshausen-Amundsen-Ross region. The only notable rise of the last 200 years in xsSO(4)(2-), around 1940, is not related to SIE fluctuations and is most likely a result of increased xsSO(4)(2-) production in the mid-low latitudes and/or an increase in transport efficiency from the mid-low latitudes to central West Antarctica. These high-resolution records show that the source types and source areas Of ssSO(4)(2-) and xsSO(4)(2-) delivered to eastern and western West Antarctica and the South Pole differ from site to site but can best be resolved using records from spatial ice-core arrays such as the International Trans-Antarctic Scientific Expedition (ITASE).
Resumo:
Sixteen high-resolution ice-core records from West Antarctica and South Pole are used to examine the spatial and temporal distribution of sulfate for the last 200 years. The preservation of seasonal layers throughout the length of each record results in a dating accuracy of better than 1 year based on known global-scale volcanic events. A dual transport source for West Antarctic sea-salt (ss) SO42- and excess (xs) SO42- is observed: lower-tropospheric for areas below 1000m elevation and mid-/upper-tropospheric/stratospheric for areas located above 1000m. Our XsSO(4)(2-) records with volcanic peaks removed do not display any evidence of an anthropogenic impact on West Antarctic SO42- concentrations but do reveal that a major climate transition takes place over West Antarctica at similar to 1940. Global-scale volcanic eruptions appear as significant peaks in the robust-spline residual xsSO(4)(2-) records from sites located above 1000 m elevation but do not appear in the residual records from sites located below 1000 m.
Resumo:
Measurements of delta(34)S covering the years 1935-76 and including the 1963 Agung (Indonesia) eruption were made on a West Antarctic firn core, RIDSA (78.73 degrees S, 116.33 degrees W; 1740m a.s.l.), and results are used to unravel potential source functions in the sulfur cycle over West Antarctica. The delta(34)S values Of SO42- range from 3.1 parts per thousand to 9.9 parts per thousand. These values are lower than those reported for central Antarctica, from near South Pole station, of 9.3-18.1 parts per thousand (Patris and others, 2000). While the Agung period is isotopically distinct at South Pole, it is not in the RIDSA dataset, suggesting differences in the source associations for the sulfur cycle between these two regions. Given the relatively large input of marine aerosols at RIDSA (determined from Na+ data and the seasonal SO42- cycle), there is likely a large marine biogenic SO42- influence. The delta(34)S values indicate, however, that this marine biogenic SO42-, with a well-established delta(34)S of 18 parts per thousand, is mixing with SO42- that has extremely negative delta(34)S values to produce the measured isotope values in the RIDSA core. We suggest that the transport and deposition of stratospheric SO42- in West Antarctica, combined with local volcanic input, accounts for the observed variance in delta(34)S values.
Resumo:
We combined 33 ice core records, 13 from the Northern Hemisphere and 20 from the Southern Hemisphere, to determine the timing and magnitude of the great Kuwae eruption in the mid-15th century. We extracted volcanic deposition signals by applying a high-pass loess filter to the time series and examining peaks that exceed twice the 31 year running median absolute deviation. By accounting for the dating uncertainties associated with each record, these ice core records together reveal a large volcanogenic acid deposition event during 1453 - 1457 A. D. The results suggest only one major stratospheric injection from the Kuwae eruption and confirm previous findings that the Kuwae eruption took place in late 1452 or early 1453, which may serve as a reference to evaluate and improve the dating of ice core records. The average total sulfate deposition from the Kuwae eruption was 93 kg SO4/km(2) in Antarctica and 25 kg SO4/km(2) in Greenland. The deposition in Greenland was probably underestimated since it was the average value of only two northern Greenland sites with very low accumulation rates. After taking the spatial variation into consideration, the average Kuwae deposition in Greenland was estimated to be 45 kg SO4/km(2). By applying the same technique to the other major eruptions of the past 700 years our result suggests that the Kuwae eruption was the largest stratospheric sulfate event of that period, probably surpassing the total sulfate deposition of the Tambora eruption of 1815, which produced 59 kg SO4/km(2) in Antarctica and 50 kg SO4/km(2) in Greenland.