3 resultados para Spectrally bounded

em DigitalCommons - The University of Maine Research


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Time-space relations of extension and volcanism place critical constraints on models of Basin and Range extensional processes. This paper addresses such relations in a 130-km-wide transect in the eastern Great Basin, bounded on the east by the Ely Springs Range and on the west by the Grant and Quinn Canyon ranges. Stratigraphic and structural data, combined with 40Ar/39Ar isotopic ages of volcanic rocks, document a protracted but distinctly episodic extensional history. Field relations indicate four periods of faulting. Only one of these periods was synchronous with nearby volcanic activity, which implies that volcanism and faulting need not be associated closely in space and time. Based on published dates and the analyses reported here, the periods of extension were (1) prevolcanic (pre-32 Ma), (2) early synvolcanic (30 to 27 Ma), (3) immediately postvolcanic (about 16 to 14 Ma), and (4) Pliocene to Quaternary. The break between the second and third periods is distinct. The minimum gap between the first two periods is 2 Ma, but the separation may be much larger. Temporal separation of the last two periods is only suggested by the stratigraphic record and cannot be rigorously demonstrated with present data. The three younger periods of faulting apparently occurred across the entire transect. The oldest period is recognized only at the eastern end of the transect, but appears to correlate about 150 km northward along strike with extension in the Northern Snake Range-Kern Mountains area. Therefore the oldest period also is regional in extent, but affected a different area than that affected by younger periods. This relation suggests that distinct extensional structures and master detachment faults were active at different times. The correlation of deformation periods of a few million years duration across the Railroad Valley-Pioche transect suggests that the scale of active extensional domains in the Great Basin may be greater than 100 km across strike.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physical forcing and biological response within the California Current System (CCS) are highly variable over a wide range of scales. Satellite remote sensing offers the only feasible means of quantifying this variability over the full extent of the CCS. Using six years (1997-2003) of daily SST and chlorophyll imagery, we map the spatial dependence of dominant temporal variability at resolutions sufficient to identify recurrent mesoscale circulation and local pattern associated with coastal topography. Here we describe mean seasonal cycles and interannual variation; intraseasonal variability is left to a companion paper ( K. R. Legaard and A. C. Thomas, manuscript in preparation, 2006). Coastal upwelling dictates seasonality along north-central California, where weak cycles of SST fluctuate between spring minima and late summer maxima and chlorophyll peaks in early summer. Off northern California, chlorophyll maxima are bounded offshore by the seasonally recurrent upwelling jet. Seasonal cycles differ across higher latitudes and in the midlatitude Southern California Bight, where upwelling winds are less vigorous and/or persistent. Seasonality along south-central Baja is strongly affected by processes other than upwelling, despite year-round upwelling-favorable winds. Interannual variation is generally dominated by El Nino and La Nina conditions. Interannual SST variance is greatest along south-central Baja, although interannual variability constitutes a greater fraction of total variance inshore along southern Oregon and much of California. Patterns of interannual chlorophyll variance are consistent with dominant forcing through the widespread depression and elevation of the nutricline during El Nino and La Nina, respectively. Interannual variability constitutes a greater fraction of total chlorophyll variance offshore.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lake Malawi boasts the highest diversity of freshwater fishes in the world. Nearshore sites are categorized according to their bottom substrate, rock or sand, and these habitats host divergent assemblages of cichlid fishes. Sexual selection driven by mate choice in cichlids led to spectacular diversification in male nuptial coloration. This suggests that the spectral radiance contrast of fish, the main determinant of visibility under water, plays a crucial role in cichlid visual communication. This study provides the first detailed description of underwater irradiance, radiance and beam attenuation at selected sites representing two major habitats in Lake Malawi. These quantities are essential for estimating radiance contrast and, thus, the constraints imposed on fish body coloration. Irradiance spectra in the sand habitat were shifted to longer wavelengths compared with those in the rock habitat. Beam attenuation in the sand habitat was higher than in the rock habitat. The effects of water depth, bottom depth and proximity to the lake bottom on radiometric quantities are discussed. The radiance contrast of targets exhibiting diffused and spectrally uniform reflectance depended on habitat type in deep water but not in shallow water. In deep water, radiance contrast of such targets was maximal at long wavelengths in the sand habitat and at short wavelengths in the rock habitat. Thus, to achieve conspicuousness, color patterns of rock-and sand-dwelling cichlids would be restricted to short and long wavelengths, respectively. This study provides a useful platform for the examination of cichlid visual communication.