4 resultados para Source of amylase producing bacteria

em DigitalCommons - The University of Maine Research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The brown alga Ascophyllum nodosum is a dominant rocky intertidal organism throughout much of the North Atlantic Ocean, yet its inability to colonize exposed or denuded shores is well recognized. Our experimental data show that wave action is a major source of mortality to recently settled zygotes. Artificially recruited zygotes consistently exhibited a Type IV survivorship curve in the presence of moving water. As few as 10, but often only 1 relatively low energy wave removed 85 to 99% of recently settled zygotes. Increasing the setting time for attachment of zygotes (prior to disturbance from water movement) had a positive effect on survival. However, survival was significantly lower at high densities, and decreased at long (24 h) setting times, probably as a result of bacteria on the surface of zygotes. Spatial refuges provided significant protection from gentle water movement but relatively little protection from waves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heinrich layers of the glacial North Atlantic record abrupt widespread iceberg rafting of detrital carbonate and other lithic material at the extreme-cold culminations of Bond climate cycles. Both internal (glaciologic) and external ( climate) forcings have been proposed. Here we suggest an explanation for the iceberg release that encompasses external climate forcing on the basis of a new glaciological process recently witnessed along the Antarctic Peninsula: rapid disintegrations of fringing ice shelves induced by climate-controlled meltwater infilling of surface crevasses. We postulate that peripheral ice shelves, formed along the eastern Canadian seaboard during extreme cold conditions, would be vulnerable to sudden climate-driven disintegration during any climate amelioration. Ice shelf disintegration then would be the source of Heinrich event icebergs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple technique was developed to measure the bacteriolytic activities of the digestive fluids of the deposit-feeding polychaete Arenicola marina. Lysis of a cultured environmental isolate, incubated with extracts of gut luminal contents, was monitored spectrophotometrically. Concurrent direct counts were used to verify cell lysis. The ability of extracts from 8 longitudinal sections of the gut to lyse the bacterium was monitored. The digestive ceca, anterior stomach, and posterior stomach regions exhibited high lytic activities, whereas bacteriolytic activities in all other regions of the gut were negligible. Similarly, extracts of surface sediments and fecal castings showed negligible lytic capabilities. The sharply limited distribution of lytic activity implicates the ceca as the source of bacteriolytic agent and suggests a true plug-flow system, with little axial mixing. Questions regarding the fate of lytic agents, which disappear abruptly posterior to the stomach, remain unanswered. Localization of lysis in the gut coupled with estimates of gut residence time permit the calculation that ingested bacteria are exposed to strong lytic activity for approximately 20 min. Incubation of in situ sediment samples with gut fluids corroborates the distributional findings of the in vitro work although the efficiency of lysis is much reduced, possibly due to exopolymer capsules and slimes of natural sedimentary bacteria. Cross-phyletic comparisons of bacteriolytic activities reveal both qualitative and quantitative differences. Much less demarcation of lytic activity is observed in the guts of a holothuroid (Caudina arenata) and a hemichordate (Stereobalanus canadensis), with a pattern more similar to that of A. marina observed in another polychaete, Amphitrite johnstoni. Quantitatively, the polychaetes showed higher levels of activity with rates in A. marina exceeding those of the hemichordate and holothuroid by more than 10-fold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is an investigation into the microbially mediated processes involved in the transformation of arsenic. With the recent change in the Federal Maximum Contaminant Level for arsenic in drinking water, an increasing amount of resources are being devoted to understanding the mechanisms involved in the movement of arsenic. Arsenic in drinking water typically comes from natural sources, but the triggers that result in increased release of arsenic from parent material are poorly understood. Knowledge of these processes is necessary in order to make sound engineering decisions regarding drinking water management practices. Recent years have brought forth the idea that bacteria play a significant role in arsenic cycling. Groundwater is a major source of potable water in this and many other countries. To date, no reports have been made indicating the presence and activity of arsenate reducing bacteria in groundwater settings, which may increase dissolved arsenic concentrations. This research was designed to address this question and has shown that these bacteria are present in Maine groundwater. Two Maine wells were sampled in order to culture resident bacteria that are capable of dissimilatory arsenate reduction. Samples were collected using anaerobic techniques fiom wells in Northport and Green Lake. These samples were amended with specific compounds to enrich the resident population of arsenate utilizing bacteria. These cultures were monitored over time to establish rates of arsenate reduction. Cultures fiom both sites exhibited arsenate reduction in initial enrichment cultures. Isolates obtained fiom the Green Lake enrichments, however, did not reduce arsenate. This indicates either that a symbiotic relationship was required for the observed arsenate reduction or that fast-growing fermentative organisms that could survive in high arsenate media were picked in the isolation procedure. The Northport cultures exhibited continued arsenate reduction after isolation and successive transfers into fiesh media. The cultured bacteria reduced the majority of 1 a arsenate solutions in less than one week, accompanied by a corresponding oxidation of lactate. The 16s rRNA fiom the isolate was arnplifled and sequenced. The results of the DNA sequence analysis indicate that the rRNA sequence of the bacteria isolated at the Northport site is unique. This means that this strain of bacteria has not been reported before. It is in the same taxonomic subgroup as two previously described arsenate respirers. The implications of this study are significant. The fact that resident bacteria are capable of reducing arsenate has implications for water management practices. Reduction of arsenate to arsenite increases the mobility of the compound, as well as the toxicity. An understanding of the activity of these types of organisms is necessary in order to understand the contribution they are making to arsenic concentrations in drinking water. The next step in this work would be to quantitj the actual loading of dissolved arsenic present in aquifers because of these organisms.