15 resultados para Siple Dome

em DigitalCommons - The University of Maine Research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Holocene portion of the Siple Dome (Antarctica) ice core was dated by interpreting the electrical, visual and chemical properties of the core. The data were interpreted manually and with a computer algorithm. The algorithm interpretation was adjusted to be consistent with atmospheric methane stratigraphic ties to the GISP2 (Greenland Ice Sheet Project 2) ice core, (BE)-B-10 stratigraphic ties to the dendrochronology C-14 record and the dated volcanic stratigraphy. The algorithm interpretation is more consistent and better quantified than the tedious and subjective manual interpretation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One common assumption in interpreting ice-core CO(2) records is that diffusion in the ice does not affect the concentration profile. However, this assumption remains untested because the extremely small CO(2) diffusion coefficient in ice has not been accurately determined in the laboratory. In this study we take advantage of high levels of CO(2) associated with refrozen layers in an ice core from Siple Dome, Antarctica, to study CO(2) diffusion rates. We use noble gases (Xe/Ar and Kr/Ar), electrical conductivity and Ca(2+) ion concentrations to show that substantial CO(2) diffusion may occur in ice on timescales of thousands of years. We estimate the permeation coefficient for CO(2) in ice is similar to 4 x 10(-21) mol m(-1) s(-1) Pa(-1) at -23 degrees C in the top 287 m (corresponding to 2.74 kyr). Smoothing of the CO(2) record by diffusion at this depth/age is one or two orders of magnitude smaller than the smoothing in the firn. However, simulations for depths of similar to 930-950m (similar to 60-70 kyr) indicate that smoothing of the CO(2) record by diffusion in deep ice is comparable to smoothing in the firn. Other types of diffusion (e.g. via liquid in ice grain boundaries or veins) may also be important but their influence has not been quantified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Air mass trajectories in the Southern Hemisphere provide a mechanism for transport to and deposition of volcanic products on the Antarctic ice sheet from local volcanoes and from tropical and subtropical volcanic centers. This study extends the detailed record of Antarctic, South American, and equatorial volcanism over the last 12,000 years using continuous glaciochemical series developed from the Siple Dome A (SDMA) ice core, West Antarctica. The largest volcanic sulfate spike ( 280 mu g/L) occurs at 5881 B. C. E. Other large signals with unknown sources are observed around 325 B. C. E. ( 270 mu g/L) and 2818 B. C. E. ( 191 mu g/L). Ages of several large equatorial or Southern Hemisphere volcanic eruptions are synchronous with many sulfate peaks detected in the SDMA volcanic ice chemistry record. The microprobe "fingerprinting'' of glass shards in the SDMA core points to the following Antarctic volcanic centers as sources of tephra found in the SDMA core: Balenny Island, Pleiades, Mount Berlin, Mount Takahe, and Mount Melbourne as well as Mount Hudson and possibly Mount Burney volcanoes of South America. Identified volcanic sources provide an insight into the poorly resolved transport history of volcanic products from source volcanoes to the West Antarctic ice sheet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Snow-accumulation rates and rates of ice-thickness change (mass balance) are studied at several sites on Siple Dome, West Antarctica. Accumulation rates are derived from analyses of gross beta radioactivity in shallow firn cores located along a 60 km transect spanning both flanks and the crest of the dome. There is a north-south gradient in snow-accumulation rate across the dome that is consistent with earlier radar mapping of internal stratigraphy. Orographic processes probably control this distribution. Mass balance is inferred from the difference between global positioning system (GPS)-derived vertical velocities and snow-accumulation rates for sites close to the firn-core locations. Results indicate that there is virtually no net thickness change at four of the five sites. The exception is at the northernmost site where a small amount of thinning is detected, that appears to be inconsistent with other studies. A possible cause of this anomalous thinning is recent retreat of the grounding line of Ice Stream D.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The radar reflectivity of an ice-sheet bed is a primary measurement for discriminating between thawed and frozen beds. Uncertainty in englacial radar attenuation and its spatial variation introduces corresponding uncertainty in estimates of basal reflectivity. Radar attenuation is proportional to ice conductivity, which depends on the concentrations of acid and sea-salt chloride and the temperature of the ice. We synthesize published conductivity measurements to specify an ice-conductivity model and find that some of the dielectric properties of ice at radar frequencies are not yet well constrained. Using depth profiles of ice-core chemistry and borehole temperature and an average of the experimental values for the dielectric properties, we calculate an attenuation rate profile for Siple Dome, West Antarctica. The depth-averaged modeled attenuation rate at Siple Dome (20.0 +/- 5.7 dB km(-1)) is somewhat lower than the value derived from radar profiles (25.3 +/- 1.1 dB km(-1)). Pending more experimental data on the dielectric properties of ice, we can match the modeled and radar-derived attenuation rates by an adjustment to the value for the pure ice conductivity that is within the range of reported values. Alternatively, using the pure ice dielectric properties derived from the most extensive single data set, the modeled depth-averaged attenuation rate is 24.0 +/- 2.2 dB km(-1). This work shows how to calculate englacial radar attenuation using ice chemistry and temperature data and establishes a basis for mapping spatial variations in radar attenuation across an ice sheet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have measured the CO2 concentration of air occluded during the last 40,000 years in the deep Siple Dome A ( hereafter Siple Dome) ice core, Antarctica. The general trend of CO2 concentration from Siple Dome ice follows the temperature inferred from the isotopic composition of the ice and is mostly in agreement with other Antarctic ice core CO2 records. CO2 rose initially at similar to 17.5 kyr B. P. ( thousand years before 1950), decreased slowly during the Antarctic Cold Reversal, rose during the Younger Dryas, fell to a local minimum at around 8 kyr B. P., and rose continuously since then. The CO2 concentration never reached steady state during the Holocene, as also found in the Taylor Dome and EPICA Dome C ( hereafter Dome C) records. During the last glacial termination, a lag of CO2 versus Siple Dome isotopic temperature is probable. The Siple Dome CO2 concentrations during the last glacial termination and in the Holocene are at certain times greater than in other Antarctic ice cores by up to 20 ppm (mumol CO2/mol air). While in situ production of CO2 is one possible cause of the sporadic elevated levels, the mechanism leading to the enrichment is not yet clear.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using US National Centers for Environmental Prediction/US National Center for Atmospheric Research re-analysis data, we investigate the relationships between crustal ion (nssCa(2+)) concentrations from three West Antarctic ice cores, namely, Siple Dome (SD), ITASE00-1 (IT001) and ITASE01-5 (IT015), and primary components of the climate system, namely, air pressure/geopotential height, zonal (u) and meridional (v) wind strength. Linear correlation analyses between nssCa(2+) concentrations and both air-pressure and wind fields for the period of overlap between records indicate that the SD nssCa(2+) variation is positively correlated with spring circumpolar zonal wind, while IT001 nssCa(2+) has a positive correlation with circumpolar zonal wind throughout the year (r > 0.3, p < 0.01). Intensified Southern Westerlies circulation is conducive to transport of more crustal aerosols to both sites. Further correlation analyses between nssCa(2+) concentrations from SD and IT001 and atmospheric circulation suggest that the high inland plateau (represented by core IT001) is largely influenced by transport from the upper troposphere. IT015 nssCa(2+) is negatively correlated with westerly wind in October and November, suggesting that stronger westerly circulation may weaken the transport of crustal species to IT015. Correlations of nssCa(2+) from the three ice cores with the Antarctic Oscillation index are consistent with results developed from the wind-field investigation. In addition, calibration between nssCa(2+) concentration and the multivariate El Nino-Southern Oscillation (ENSO) index shows that crustal species transport to IT001 is enhanced during strong ENSO events.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present highly resolved, annually dated, calibrated proxies for atmospheric circulation from several Antarctic ice cores (ITASE (International Trans-Antarctic Scientific Expedition), Siple Dome, Law Dome) that reveal decadal-scale associations with a South Pole ice-core Be-10 proxy for solar variability over the last 600 years and annual-scale associations with solar variability since AD 1720. We show that increased (decreased) solar irradiance is associated with increased (decreased) zonal wind strength near the edge of the Antarctic polar vortex. The association is particularly strong in the Indian and Pacific Oceans and as such may contribute to understanding climate forcing that controls drought in Australia and other Southern Hemisphere climate events. We also include evidence suggestive of solar forcing of atmospheric circulation near the edge of the Arctic polar vortex based on ice-core records from Mount Logan, Yukon Territory, Canada, and both central and south Greenland as enticement for future investigations. Our identification of solar forcing of the polar atmosphere and its impact on lower latitudes offers a mechanism for better understanding modern climate variability and potentially the initiation of abrupt climate-change events that operate on decadal and faster scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Explosive volcanic eruptions can inject large quantities of sulphur dioxide into the stratosphere. The aerosols that result from oxidation of the sulphur dioxide can produce significant cooling of the troposphere by reflecting or absorbing solar radiation. It is possible to obtain an estimate of the relative stratospheric sulphur aerosol concentration produced by different volcanoes by comparing sulphuric acid fluxes determined by analysis of polar ice cores. Here, we use a non-sea-salt sulphate time series derived from three well-dated Law Dome ice cores to investigate sulphuric acid flux ratios for major eruptions over the period AD 1301-1995. We use additional data from other cores to investigate systematic spatial variability in the ratios. Only for the Kuwae eruption (Law Dome ice date AD 1459.5) was the H2SO4 flux larger than that deposited by Tambora (Law Dome ice date AD 1816.7).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Local rates of change in ice-sheet thickness were calculated at IS sites in West Antarctica using the submergence velocity technique. This method entails a comparison of the vertical velocity of the ice sheet, measured using repeat global positioning system surveys of markers, and local long-term rates of snow accumulation obtained using firn-core stratigraphy. Any significant difference between these two quantities represents a thickness change with time. Measurements were conducted at sites located similar to 100-200 km apart along US ITASE traverse routes, and at several isolated locations. All but one of the sites are distributed in the Siple Coast and the Amundsen Sea basin along contours of constant elevation, along flowlines, across ice divides and close to regions of enhanced flow. Calculated rates of thickness change are different from site to site. Most of the large rates of change in ice thickness (similar to 10 cm a(-1) or larger) are observed in or close to regions of rapid flow, and are probably related to ice-dynamics effects. Near-steady-state conditions are calculated mostly at sites in the slow-moving ice-sheet interior and near the main West Antarctic ice divide. These results are consistent with regional estimates of ice-sheet change derived from remote-sensing measurements at similar locations in West Antarctica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compare ICESat data (2003-2004) to airborne laser altimetry data (1997-98 and 1999-2000) to monitor surface changes over portions of Van der Veen (VdVIS), Whillans (WIS) and Kamb ice streams (KIS) in the Ross Embayment of the West Antarctic Ice Sheet. The spatial pattern of detected surface changes is generally consistent with earlier observations. However, important changes have occurred during the past decade. For example, areas on the VdVIS and WIS, where large thinning was detected by the airborne surveys, are now closer to being in balance. The upper trunk of KIS continues to build up with thickening rates reaching 0.4 m/year. Our results provide new evidence that the overall mass balance of the region is becoming more positive, but a significant spatial variability exists. They also demonstrate the potential of ICESat data for detecting spatial patterns of surface elevation change in Antarctica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 700-year, high-resolution, multivariate ice core record from Dome Summit South (DSS) (66degrees46'S, 112degrees48'E; 1370 m), Law Dome, is used to investigate sea level pressure (SLP) variability in the region of East Antarctica. Empirical orthogonal function (EOF) analysis reveals that the first EOF (LDEOF1) of the combined glaciochemical, oxygen isotope ratio, and accumulation rate record from DSS represents most of the variability in sea salt seen in the record. LDEOF1 is positively correlated (at least 95% confidence level) to instrumental June mean SLP across most of East Antarctica. Over the last 700 years, LDEOF1 levels at Law Dome were the highest during the nineteenth century, suggesting an increase in intensification of winter circulation during this period. The Law Dome DSS oxygen isotope ratio series also indicates that the nineteenth century had the coldest winters of any century in the record. In contrast, LDEOF1 levels were the lowest at Law Dome during the eighteenth century, suggesting a significant shift in the patterns and/or intensity of East Antarctic atmospheric circulation between the eighteenth and the nineteenth centuries. The LDEOF1 sea salt record is characterized by significant decadal-scale variability with a strong 25-year periodic structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of ice cores from sites with different snow-accumulation rates across Law Dome, East Antarctica, was investigated for methanesulphonic acid (MSA) movement. The precipitation at these sites (up to 35 km apart) is influenced by the same air masses, the principal difference being the accumulation rate. At the low-accumulation-rate W20k site (0.17 in ice equivalent), MSA was completely relocated from the summer to winter layer. Moderate movement was observed at the intermediate-accumulation-rate site (0.7 in ice equivalent), Dome Summit South (DSS), while there was no evidence of movement at the high-accumulation-rate DE08 site (1.4 in ice equivalent). The main DSS record of MSA covered the epoch AD 1727-2000 and was used to investigate temporal post-depositional changes. Co-deposition of MSA and sea-salt ions was observed of the surface layers, outside of the main summer MSA peak, which complicates interpretation of these peaks as evidence of movement in deeper layers. A seasonal study of the 273 year DSS record revealed MSA migration predominantly from summer into autumn (in the up-core direction), but this migration was suppressed during the Tambora (1815) and unknown (1809) volcanic eruption period, and enhanced during an epoch (1770-1800) with high summer nitrate levels. A complex interaction between the gradients in nss-sulphate, nitrate and sea salts (which are influenced by accumulation rate) is believed to control the rate and extent of movement of MSA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present new interpretations of deglaciation in McMurdo Sound and the western Ross Sea, with observationally based reconstructions of interactions between East and West Antarctic ice at the last glacial maximum (LGM), 16 000, 12 000, 8000 and 4000 sp. At the LGM? East Antarctic ice from Mulock Glacier split, one branch turned westward south of Ross Island but the other branch rounded Ross Island before flowing southwest into McMurdo Sound. This flow regime, constrained by an ice saddle north of Ross Island, is consistent with the reconstruction of Stuiver and others (1981a). After the LGM, grounding-line retreat was most rapid in areas with greatest water depth, especially along the Victoria Land coast. By 12 000 sp, the ice-now regime in McMurdo Sound changed to through-flowing Mulock Glacier ice, with lesser contributions from Koettlitz, Blue and Ferrar Glaciers, because the former ice saddle north of Ross Island was replaced by a dome. The modern flew regime was established similar to 4000 BP. Ice derived from high elevations on the Polar Plateau but now stranded on the McMurdo Ice Shelf, and the pattern of the Transantarctic Mountains erratics support our reconstructions of Mulock Glacier ice rounding Minna Bluff but with all ice from Skelton Glacier ablating south of the bluff. They are inconsistent with Drewry's (1979) LGM reconstruction that includes Skelton Glacier ice in the McMurdo-Sound through-flow. Drewry's (1979) model closely approximates our results for 12 000-4000 BP. Ice-sheet modeling holds promise for determining whether deglaciation proceeded by grounding-line retreat of an ice sheet that was largely stagnant, because it never approached equilibrium flowline profiles after the Ross Ice Shelf, grounded, or of a dynamic ice sheet with flowline profiles kept low by active ice streams that extended northward from present-day outlet glaciers after the Ross Ice Shelf grounded.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ar-40/Ar-39 total gas and plateau dates from muscovite and biotite in the southern Black Hills, South Dakota, provide evidence for a period of Middle Proterozoic slow cooling. Early Proterozoic (1600-1650 Ma) mica dates were obtained from metasedimentary rocks located in a synformal structure between the Harney Peak and Bear Mountain domes and also south of Bear Mountain. Metamorphic rocks from the dome areas and undeformed samples of the similar to 1710 Ma Harney Peak Granite (HPG) yield Middle Proterozoic mica dates (similar to 1270-1500 Ma). Two samples collected between the synform and Bear Mountain dome yield intermediate total gas mica dates of similar to 1550 Ma. We suggest two end-member interpretations to explain the map pattern of cooling ages: (1) subhorizontal slow cooling of an area which exhibits variation in mica Ar retention intervals or (2) mild folding of a Middle Proterozoic (similar to 1500 Ma) similar to 300 degrees C isotherm. According to the second interpretation, the preservation of older dates between the domes may reflect reactivation of a preexisting synformal structure (and downwarping of relatively cold rocks) during a period of approximately east-west contraction and slow uplift during the Middle Proterozoic. The mica data, together with hornblende data from the Black Hills published elsewhere, indicate that the ambient country-rock temperature at the 3-4 kbar depth of emplacement of the HPG was between 350 degrees C and 500 degrees C, suggesting that the average upper crustal geothermal gradient was 25 degrees-40 degrees C/km prior to intrusion. The thermochronologic data suggest HPG emplacement was followed by a similar to 200 m.y. period of stability and tectonic quiescence with little uplift. We propose that crust thickened during the Early Proterozoic was uplifted and erosionally(?) thinned prior to similar to 1710 Ma and that the HPG magma was emplaced into isostatically stable crust of relatively normal thickness. We speculate that uplift and crustal thinning prior to HPG intrusion was the result of differential thinning of the subcrustal lithosphere beneath the Black Hills. If so, this process would have also caused an increase in mantle heat flux across the Moho and triggered vapor-absent melting of biotite to produce the HPG magma. This scenario for posttectonic granite generation is supported, in part, by the fact that in the whole of the Black Hills, the HPG is spatially associated with the deepest exposed Early Proterozoic country rock.