5 resultados para STEM faculty development

em DigitalCommons - The University of Maine Research


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shallow ice cores were obtained from widely distributed sites across the West Antarctic ice sheet, as part of the United States portion of the International Trans-Antarctic Scientific Expedition (US ITASE) program. The US ITASE cores have been dated by annual-layer counting, primarily through the identification of summer peaks in non-sea-salt sulfate (nssSO(4)(2-)) concentration. Absolute dating accuracy of better than 2 years and relative dating accuracy better than 1 year is demonstrated by the identification of multiple volcanic marker horizons in each of the cores, Tambora, Indonesia (1815), being the most prominent. Independent validation is provided by the tracing of isochronal layers from site to site using high-frequency ice-penetrating radar observations, and by the timing of mid-winter warming events in stable-isotope ratios, which demonstrate significantly better than 1 year accuracy in the last 20 years. Dating precision to 1 month is demonstrated by the occurrence of summer nitrate peaks and stable-isotope ratios in phase with nssSO(4)(2-), and winter-time sea-salt peaks out of phase, with phase variation of < 1 month. Dating precision and accuracy are uniform with depth, for at least the last 100 years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the finite-element we have modeled the stress field near the calving face of an idealized tidewater glacier under a variety of assumptions about submarine calving-face height, subaerial calving-face height, and ice rheology These simulations all suggest that a speed maximum should be present at the calving face near the waterline. In experiments without crevassing, the decrease in horizontal velocity above this maximum culminates in a zone of longitudinal compression at the surface somewhat Up-glacier from the face. This zone of compression appears to be a consequence of the non-linear rheology of ice. It disappears when a linear rheology is assumed. Explorations of the near-surface stress field indicate that when pervasive crevassing of the surface ice is accounted for in the simulations (by rheological softening), the zone of compressive strain rates does not develop. Variations in the pattern of horizontal velocity with glacier thickness support the contention that calving rates should increase with water depth at the calving face. In addition, the height of the subaerial calving face may have an importance that is not visible ill Current field data owing to the lack of variation in height of such faces in nature. Glaciers with lower calving faces may not have sufficient tensile stress to calve actively, while tensile stresses in simulated higher faces are sufficiently high that such faces will be unlikely to build in nature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the homing behavior of Atlantic salmon Salmo salar is vital to the restoration program employed on the Penobscot River, Maine. To produce significant adult returns, managers currently stock hatchery-raised smolts in specific river sections, providing smolts the opportunity to imprint on chemical signals and enabling their return to productive spawning and rearing habitat as adults. In this study, we used observational evidence from passive integrated transponder telemetry to determine whether adults returning from smolt stockings behaved in a way that suggested strong homing to smolt stocking locations. Adults returning from smolt stocking locations located in or at the mouth of the Piscataquis River were more likely to be detected as entering the Piscataquis River than were adults returning from the upper Penobscot River smolt stocking locations. In general, returning adult Atlantic salmon that had been stocked near or in tributaries as smolts chose a path more quickly than those that had been stocked in more downstream or main-stem locations. These results suggest that Atlantic salmon smolts should be stocked at specific sites with superior habitat for spawning kind juvenile survival to capitalize on the strong homing tendency in adults. This technique call also be utilized to allow for natural selection and the development of localized stocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Larval development time is a critical factor in assessing the potential for larval transport, mortality. and subsequently, the connectivity of marine populations through larval exchange. Most estimates of larval duration are based on laboratory studies and may not reflect development times in nature. For larvae of the American lobster (Homarus americanus), temperature-dependent development times have been established in previous laboratory studies. Here, we used the timing of seasonal abundance curves for newly hatched larvae (stage 1) and the final plankonic instar (postlarva), coupled with a model of temperature-dependent development to assess development time in the field. We were unable to reproduce the timing of the seasonal abundance curves using laboratory development rates in our model. Our results suggest that larval development in situ may be twice as fast as reported laboratory rates. This will result in reduced estimates of larval transport potential, and increased estimates of instantaneous mortality rate and production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study adapted the current model of science undergraduate research experiences (URE's) and applied this novel modification to include community college students. Numerous researchers have examined the efficacy of URE's in improving undergraduate retention and graduation rates, as well as matriculation rates for graduate programs. However, none have detailed the experience for community college students, and few have employed qualitative methodologies to gather relevant descriptive data from URE participants. This study included perspectives elicited from both non-traditional student participants and the established laboratory community. The purpose of this study was to determine the effectiveness of the traditional model for a non-traditional student population. The research effort described here utilized a qualitative design and an explanatory case study methodology. Six non-traditional students from the Maine Community College System participated in this study. Student participants were placed in six academic research laboratories located throughout the state. Student participants were interviewed three times during their ten-week internship and asked to record their personal reflections in electronic format. Participants from the established research community were also interviewed. These included both faculty mentors and other student laboratory personnel. Ongoing comparative analysis of the textual data revealed that laboratory organizational structure and social climate significantly influence acculturation outcomes for non-traditional URE participants. Student participants experienced a range of acculturation outcomes from full integration to marginalization. URE acculturation outcomes influenced development of non-traditional students? professional and academic self-concepts. Positive changes in students? self-concepts resulted in greater commitment to individual professional goals and academic aspirations. The findings from this study suggest that traditional science URE models can be successfully adapted to meet the unique needs of a non-traditional student population – community college students. These interpretations may encourage post-secondary educators, administrators, and policy makers to consider expanded access and support for non-traditional students seeking science URE opportunities.