2 resultados para SLAB
em DigitalCommons - The University of Maine Research
Resumo:
We address under what conditions a magma generated by partial melting at 100 km depth in the mantle wedge above a subduction zone can reach the crust in dikes before stalling. We also address under what conditions primitive basaltic magma (Mg # >60) can be delivered from this depth to the crust. We employ linear elastic fracture mechanics with magma solidification theory and perform a parametric sensitivity analysis. All dikes are initiated at a depth of 100 km in the thermal core of the wedge, and the Moho is fixed at 35 km depth. We consider a range of melt solidus temperatures (800-1100 degrees C), viscosities (10-100 Pa s), and densities (2400-2700 kg m(-3)). We also consider a range of host rock fracture toughness values (50-300 MPa m(1/2)) and dike lengths (2-5 km) and two thermal structures for the mantle wedge (1260 and 1400 degrees C at 100 km depth and 760 and 900 degrees C at 35 km depth). For the given parameter space, many dikes can reach the Moho in less than a few hundred hours, well within the time constraints provided by U series isotope disequilibria studies. Increasing the temperature in the mantle wedge, or increasing the dike length, allows additional dikes to propagate to the Moho. We conclude that some dikes with vertical lengths near their critical lengths and relatively high solidus temperatures will stall in the mantle before reaching the Moho, and these may be returned by corner flow to depths where they can melt under hydrous conditions. Thus, a chemical signature in arc lavas suggesting partial melting of slab basalts may be partly influenced by these recycled dikes. Alternatively, dikes with lengths well above their critical lengths can easily deliver primitive magmas to the crust, particularly if the mantle wedge is relatively hot. Dike transport remains a viable primary mechanism of magma ascent in convergent tectonic settings, but the potential for less rapid mechanisms making an important contribution increases as the mantle temperature at the Moho approaches the solidus temperature of the magma.
Resumo:
Calving has been studied for glaciers ranging from slow polar glaciers that calve on dry land, such as on Deception Island (63.0-degrees-S, 60.6-degrees-W) in Antarctica, through temperate Alaskan tide-water glaciers, to fast outlet glaciers that float in fiords and calve in deep water, such as Jakobshavns Isbrae (69.2-degrees-N, 49.9-degrees-W) in Greenland. Calving from grounded ice walls and floating ice shelves is the main ablation mechanism for the Antarctic and Greenland ice sheets, as it was along marine and lacustrine margins of former Pleistocene ice sheets, and is for tide-water and polar glaciers. Yet, the theory of ice calving is underdeveloped because of inherent dangers in obtaining field data to test and constrain calving models. An attempt is made to develop a calving theory for ice walls grounded in water of variable depth, and to relate slab calving from ice walls to tabular calving from ice shelves. A calving law is derived in which calving rates from ice walls are controled by bending creep behind the ice wall, and depend on wall height h, forward bending angle-theta, crevasse distance c behind the ice wall and depth d of water in front of the ice wall. Reasonable agreement with calving rates reported by Brown and others (1982) for Alaskan tide-water glaciers is obtained when c depends on wall height, wall height above water and water depth. More data are needed to determine which of these dependencies is correct. A calving ratio c/h is introduced to understand the transition from slab calving to tabular calving as water deepens and the calving glacier becomes afloat.