2 resultados para Rominski, Dale
em DigitalCommons - The University of Maine Research
Resumo:
As Death of a Salesman opens, Willy Loman returns home “tired to the death” (p. 13). Lost in reveries about the beautiful countryside and the past, he's been driving off the road; and now he wants a cheese sandwich. But Linda's suggestion that he try a new American-type cheese — “It's whipped” (p. 16) — irritates Willy: “Why do you get American when I like Swiss?” (p. 17). His anger at being contradicted unleashes an indictment of modern industrialized America: The street is lined with cars. There's not a breath of fresh air in the neighborhood. The grass don't grow any more, you can't raise a carrot in the back yard. (p. 17). In the old days, “This time of year it was lilac and wisteria.” Now: “Smell the stink from that apartment house! And another one on the other side…” (pp. 17–18). But just as Willy defines the conflict between nature and industry, he pauses and simply wonders: “How can they whip cheese?” (p. 18). The clash between the old agrarian ideal and capitalistic enterprise is well documented in the literature on Death of a Salesman, as is the spiritual shift from Thomas Jefferson to Andrew Carnegie to Dale Carnegie that the play reflects. The son of a pioneer inventor and the slave to broken machines, Willy Loman seems to epitomize the victim of modern technology.
Resumo:
The radar reflectivity of an ice-sheet bed is a primary measurement for discriminating between thawed and frozen beds. Uncertainty in englacial radar attenuation and its spatial variation introduces corresponding uncertainty in estimates of basal reflectivity. Radar attenuation is proportional to ice conductivity, which depends on the concentrations of acid and sea-salt chloride and the temperature of the ice. We synthesize published conductivity measurements to specify an ice-conductivity model and find that some of the dielectric properties of ice at radar frequencies are not yet well constrained. Using depth profiles of ice-core chemistry and borehole temperature and an average of the experimental values for the dielectric properties, we calculate an attenuation rate profile for Siple Dome, West Antarctica. The depth-averaged modeled attenuation rate at Siple Dome (20.0 +/- 5.7 dB km(-1)) is somewhat lower than the value derived from radar profiles (25.3 +/- 1.1 dB km(-1)). Pending more experimental data on the dielectric properties of ice, we can match the modeled and radar-derived attenuation rates by an adjustment to the value for the pure ice conductivity that is within the range of reported values. Alternatively, using the pure ice dielectric properties derived from the most extensive single data set, the modeled depth-averaged attenuation rate is 24.0 +/- 2.2 dB km(-1). This work shows how to calculate englacial radar attenuation using ice chemistry and temperature data and establishes a basis for mapping spatial variations in radar attenuation across an ice sheet.