2 resultados para Rock Chabón
em DigitalCommons - The University of Maine Research
Resumo:
The abundance of many invertebrates with planktonic larval stages can be determined shortly after they reach the benthos. In this study, we quantified patterns of abundance and habitat utilization of early benthic phases of the American lobster Homarus americanus and the rock crab Cancer irroratus. These 2 decapods are among the most common and abundant macroinvertebrates in coastal zones of the Gulf of Maine, with similar densities of larger individuals. Settlement and early postsettlement survival indicate that lobsters are highly substrate-specific early in life, settling predominantly in cobble beds. Crabs appear to be less selective, setting both in cobble and sand. Cumulative settlement of crabs, inferred from weekly censuses over the summer, was an order of magnitude greater than that of lobsters over the same time period. However, only crabs showed significant postsettlement losses. Although the identity of specific predators is unknown, predator exclusion experiments and placement of vacant uninhabited nursery habitat suggested that post-settlement mortality rather than emigration was responsible for these losses. The selective habitat-seeking behavior and lower post-settlement mortality of lobsters is consistent with their lower fecundity and later onset of reproductive maturity. The patterns observed for crabs, however, suggest a different strategy which is more in accordance with their higher fecundity and earlier onset of maturity. It is possible that lower fecundity but greater per-egg investment, along with strict habitat selection at settlement and lower post-settlement mortality, allows adult lobster populations to equal adult populations of crabs. This occurs despite crabs being more fecund and less habitat-selective settlers but sustaining higher postsettlement mortality.
Resumo:
Lake Malawi boasts the highest diversity of freshwater fishes in the world. Nearshore sites are categorized according to their bottom substrate, rock or sand, and these habitats host divergent assemblages of cichlid fishes. Sexual selection driven by mate choice in cichlids led to spectacular diversification in male nuptial coloration. This suggests that the spectral radiance contrast of fish, the main determinant of visibility under water, plays a crucial role in cichlid visual communication. This study provides the first detailed description of underwater irradiance, radiance and beam attenuation at selected sites representing two major habitats in Lake Malawi. These quantities are essential for estimating radiance contrast and, thus, the constraints imposed on fish body coloration. Irradiance spectra in the sand habitat were shifted to longer wavelengths compared with those in the rock habitat. Beam attenuation in the sand habitat was higher than in the rock habitat. The effects of water depth, bottom depth and proximity to the lake bottom on radiometric quantities are discussed. The radiance contrast of targets exhibiting diffused and spectrally uniform reflectance depended on habitat type in deep water but not in shallow water. In deep water, radiance contrast of such targets was maximal at long wavelengths in the sand habitat and at short wavelengths in the rock habitat. Thus, to achieve conspicuousness, color patterns of rock-and sand-dwelling cichlids would be restricted to short and long wavelengths, respectively. This study provides a useful platform for the examination of cichlid visual communication.