2 resultados para Radio Liberty (Prague, Czech Republic)

em DigitalCommons - The University of Maine Research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lesni Potok stream drains a forested headwater catchment in the central Czech Republic. It was artificially acidified with hydrochloric acid (HCl) for four hours to assess the role of stream substrate in acid-neutralisation and recovery. The pH was lowered from 4.7 to 3.2. Desorption of Ca and MP and desorption or solution of Al dominated acid-neutralisation; Al mobilisation was more important later. The stream substrate released 4.542 meq Ca, 1, 184 meq Mg, and 2,329 meq Al over a 45 in long and I in wide stream segment, smaller amounts of Be. Cd, Fe, and Mn were released. Adsorption of SO42- and desorption of F- occurred during the acidification phase of the experiment. The exchange reactions were rapidly reversible for Ca, Mg and SO42- but not symmetric as the substrate resorbed 1083, 790 and 0 meq Ca, Mg, and Al. respectively, in a 4-hour recovery period. Desorption of SO42- occurred during the resorption of Ca and Mg. These exchange and dissolution reactions delay acidification, diminish the pH depression and retard recovery from episodic acidification. The behaviour of the stream substrate-water interaction resembles that for soil-soil water interactions. A mathematical dynamic mass-balance based model, MASS (Modelling Acidification of Stream Sediments), was developed which simulates the adsorption and desorption of base cations during the experiment and was successfully calibrated to the experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-term trends of dissolved silicon (Si) concentrations in five glacial lakes in the Bohemian Forest, Czech Republic, recovering from acidification show higher mobility of Si from the soil to surface waters despite lower atmospheric deposition of acids. Si increased by 0.95 to 1.95 mu mol yr(-1) (36 to 51%) from 1986-2004 and with increasing pH. A change in soil solution conditions because of a sharp decrease in acidic deposition has led to marked decline in Al mobility and to considerable decreases in dissolved Al, especially Al3+. The increase in Si may be related to: (1) unblocking of the inhibitory effect of dissolved Al on weathering of alummosilicates, (2) biogenic opal (phytoliths) dissolving faster, and/or (3) lower Si precipitation as secondary alummosilicates in soil. The change in Al speciation on the dissolution rate of biogenic silica is critical. A lack of change in Si at sites outside central Europe may be explained by small or no decline in mobility of dissolved Al. The effect of a long-term increase in temperature was probably minor.