6 resultados para RC4 Stream Cipher

em DigitalCommons - The University of Maine Research


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Major episodic acidifications were observed on several occasions in first-order brooks at Acadia National Park, Mount Desert Island, Maine. Short-term declines of up to 2 pH units and 130-mu-eq L-1 acid-neutralizing capacity were caused by HCl from soil solutions, rather than by H2SO4 or HNO3 from precipitation, because (1) SO4 concentrations were constant or decreased during the pH depression, (2) Cl concentrations were greatest at the time of lowest pH, and (3) Na:Cl ratios decreased from values much greater than those in precipitation (a result of chemical weathering), to values equal to or less than those in precipitation. Dilution, increases in NO3 concentrations, or increased export or organic acidity from soils were insufficient to cause the observed decreases in pH. These data represent surface water acidifications due primarily to an ion exchange "salt effect" of Na+ for H+ in soil solution, and secondarily to dilution, neither of which is a consequence of acidic deposition. The requisite conditions for a major episodic salt effect acidification include acidic soils, and either an especially salt-laden wet precipitation event, or a period of accumulation of marine salts from dry deposition, followed by wet inputs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lesni Potok stream drains a forested headwater catchment in the central Czech Republic. It was artificially acidified with hydrochloric acid (HCl) for four hours to assess the role of stream substrate in acid-neutralisation and recovery. The pH was lowered from 4.7 to 3.2. Desorption of Ca and MP and desorption or solution of Al dominated acid-neutralisation; Al mobilisation was more important later. The stream substrate released 4.542 meq Ca, 1, 184 meq Mg, and 2,329 meq Al over a 45 in long and I in wide stream segment, smaller amounts of Be. Cd, Fe, and Mn were released. Adsorption of SO42- and desorption of F- occurred during the acidification phase of the experiment. The exchange reactions were rapidly reversible for Ca, Mg and SO42- but not symmetric as the substrate resorbed 1083, 790 and 0 meq Ca, Mg, and Al. respectively, in a 4-hour recovery period. Desorption of SO42- occurred during the resorption of Ca and Mg. These exchange and dissolution reactions delay acidification, diminish the pH depression and retard recovery from episodic acidification. The behaviour of the stream substrate-water interaction resembles that for soil-soil water interactions. A mathematical dynamic mass-balance based model, MASS (Modelling Acidification of Stream Sediments), was developed which simulates the adsorption and desorption of base cations during the experiment and was successfully calibrated to the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Repeat airborne laser altimeter measurements are used to derive surface elevation changes on parts of Whillans Ice Stream and Ice Stream C, West Antarctica. Elevation changes are converted to estimates of ice equivalent thickness change using local accumulation rates, surface snow densities and vertical bedrock motions. The surveyed portions of two major tributaries of Whillans Ice Stream are found to be thinning almost uniformly at an average rate of similar to 1 m a(-1). Ice Stream C has a complicated elevation-change pattern, but is generally thickening. These results are used to estimate the contribution of each surveyed region to the current rate of global sea-level rise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental short-term acidification with HCl at a first-order stream in central Maine, USA was used to study processes controlling the changes in stream chemistry and to assess the ability of stream substrate to buffer pH. The streambed exerted a strong buffering capacity against pH change by ion exchange during the 6-hour acidification. Streambed substrates had substantial cation and anion exchange capacity in the pH range of 4.1 to 6.5. The ion exchange for cations and SO42- were rapid and reversible. The speed of release of cations from stream substrates was Na1+ > Ca2+ > Mg2+ > Aln+ > Be2+, perhaps relating to charge density of these cations. Ca2+ desorption dominated neutralisation of excess H+ for the first 2 hr. As the reservoir of exchangeable Ca diminished, desorption land possibly dissolution) of Al3+ became the dominant neutralising mechanism. The exchangeable land possibly soluble) reservoir of Al was not depleted during the 6-hour acidification. Sulphate adsorption during the acidification reduced the concentration of SO42- in stream water by as much as 20 mu eq L-1 (from 70 mu eq L-1). Desorption of SO42- and adsorption of base cat ions after the artificial acidification resulted in a prolongation of the pH depression. The streambed had the capacity to buffer stream water chemistry significantly during an acidifying event affecting the entire upstream catchment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three-dimensional Princeton Ocean Model is used to examine the modification of the Gulf Stream and its meanders by cold air outbreaks. Two types of Gulf Stream meanders are found in the model. Meanders on the shoreward side of the Gulf Stream are baroclinically unstable. They are affected little by the atmospheric forcing because their energy source is stored at the permanent thermocline, well below the influence of the surface forcing. Meanders on the seaward side of the stream are both barotropically and baroclinically unstable. The energy feeding these meanders is stored at the surface front separating the Gulf Stream and the Sargasso Seal which is greatly reduced in case of cold air outbreaks. Thus, meanders there reduce strength and also seem to slow their downstream propagation due to the southward Ekman flow. Heat budget calculations suggest two almost separable processes. The oceanic heal released to the atmosphere during these severe cooling episodes comes almost exclusively from the upper water column. Transport of heat by meanders from the Gulf Stream to the shelf, though it is large, does not disrupt the principal balance. It is balanced nicely with the net heat transport in the downstream direction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three-dimensional, regional coupled atmosphere-ocean model with full physics is developed to study air-sea interactions during winter storms off the U. S. east coast. Because of the scarcity of open ocean observations, models such as this offer valuable opportunities to investigate how oceanic forcing drives atmospheric circulation and vice versa. The study presented here considers conditions of strong atmospheric forcing (high wind speeds) and strong oceanic forcing (significant sea surface temperature (SST) gradients). A simulated atmospheric cyclone evolves in a manner consistent with Eta reanalysis, and the simulated air-sea heat and momentum exchanges strongly affect the circulations in both the atmosphere and the ocean. For the simulated cyclone of 19-20 January 1998, maximum ocean-to-atmosphere heat fluxes first appear over the Gulf Stream in the South Atlantic Bight, and this results in rapid deepening of the cyclone off the Carolina coast. As the cyclone moves eastward, the heat flux maximum shifts into the region near Cape Hatteras and later northeast of Hatteras, where it enhances the wind locally. The oceanic response to the atmospheric forcing is closely related to the wind direction. Southerly and southwesterly winds tend to strengthen surface currents in the Gulf Stream, whereas northeasterly winds weaken the surface currents in the Gulf Stream and generate southwestward flows on the shelf. The oceanic feedback to the atmosphere moderates the cyclone strength. Compared with a simulation in which the oceanic model always passes the initial SST to the atmospheric model, the coupled simulation in which the oceanic model passes the evolving SST to the atmospheric model produces higher ocean-to-atmosphere heat flux near Gulf Stream meander troughs. This is due to wind-driven lateral shifts of the stream, which in turn enhance the local northeasterly winds. Away from the Gulf Stream the coupled simulation produces surface winds that are 5 similar to 10% weaker. Differences in the surface ocean currents between these two experiments are significant on the shelf and in the open ocean.