5 resultados para Predators

em DigitalCommons - The University of Maine Research


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean observing systems and satellites routinely collect a wealth of information on physical conditions in the ocean. With few exceptions, such as chlorophyll concentrations, information on biological properties is harder to measure autonomously. Here, we present a system to produce estimates of the distribution and abundance of the copepod Calanus finmarchicus in the Gulf of Maine. Our system uses satellite-based measurements of sea surface temperature and chlorophyll concentration to determine the developmental and reproductive rates of C. finmarchicus. The rate information then drives a population dynamics model of C. finmarchicus that is embedded in a 2-dimensional circulation field. The first generation of this system produces realistic information on interannual variability in C. finmarchicus distribution and abundance during the winter and spring. The model can also be used to identify key drivers of interannual variability in C. finmarchicus. Experiments with the model suggest that changes in initial conditions are overwhelmed by variability in growth rates after approximately 50 d. Temperature has the largest effect on growth rate. Elevated chlorophyll during the late winter can lead to increased C. finmarchicus abundance during the spring, but the effect of variations in chlorophyll concentrations is secondary to the other inputs. Our system could be used to provide real-time estimates or even forecasts of C. finmarchicus distribution. These estimates could then be used to support management of copepod predators such as herring and right whales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Balancing human uses of the marine environment with the recovery of protected species requires accurate information on when and where species of interest are likely to be present. Here, we describe a system that can produce useful estimates of right whale Eubalaena glacialis presence and abundance on their feeding grounds in the Gulf of Maine. The foundation of our system is a coupled physical-biological model of the copepod Calan us finmarchicus, the preferred prey of right whales. From the modeled prey densities, we can estimate when whales will appear in the Great South Channel feeding ground. Based on our experience with the system, we consider how the relationship between right whales and copepods changes across spatial scales. The scale-dependent relationship between whales and copepods provides insight into how to improve future estimates of the distribution of right whales and other pelagic predators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The abundance of many invertebrates with planktonic larval stages can be determined shortly after they reach the benthos. In this study, we quantified patterns of abundance and habitat utilization of early benthic phases of the American lobster Homarus americanus and the rock crab Cancer irroratus. These 2 decapods are among the most common and abundant macroinvertebrates in coastal zones of the Gulf of Maine, with similar densities of larger individuals. Settlement and early postsettlement survival indicate that lobsters are highly substrate-specific early in life, settling predominantly in cobble beds. Crabs appear to be less selective, setting both in cobble and sand. Cumulative settlement of crabs, inferred from weekly censuses over the summer, was an order of magnitude greater than that of lobsters over the same time period. However, only crabs showed significant postsettlement losses. Although the identity of specific predators is unknown, predator exclusion experiments and placement of vacant uninhabited nursery habitat suggested that post-settlement mortality rather than emigration was responsible for these losses. The selective habitat-seeking behavior and lower post-settlement mortality of lobsters is consistent with their lower fecundity and later onset of reproductive maturity. The patterns observed for crabs, however, suggest a different strategy which is more in accordance with their higher fecundity and earlier onset of maturity. It is possible that lower fecundity but greater per-egg investment, along with strict habitat selection at settlement and lower post-settlement mortality, allows adult lobster populations to equal adult populations of crabs. This occurs despite crabs being more fecund and less habitat-selective settlers but sustaining higher postsettlement mortality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kelp forests are phyletically diverse, structurally complex and highly productive components of cold-water rocky marine coastlines. This paper reviews the conditions in which kelp forests develop globally and where, why and at what rate they become deforested. The ecology and long archaeological history of kelp forests are examined through case studies from southern California, the Aleutian Islands and the western North Atlantic, well-studied locations that represent the widest possible range in kelp forest biodiversity. Global distribution of kelp forests is physiologically constrained by light at high latitudes and by nutrients, warm temperatures and other macrophytes at low latitudes. Within mid-latitude belts (roughly 40-60degrees latitude in both hemispheres) well-developed kelp forests are most threatened by herbivory, usually from sea urchins. Overfishing and extirpation of highly valued vertebrate apex predators often triggered herbivore population increases, leading to widespread kelp deforestation. Such deforestations have the most profound and lasting impacts on species-depauperate systems, such as those in Alaska and the western North Atlantic. Globally urchin-induced deforestation has been increasing over the past 2-3 decades. Continued fishing down of coastal food webs has resulted in shifting harvesting targets from apex predators to their invertebrate prey, including kelp-grazing herbivores. The recent global expansion of sea urchin harvesting has led to the widespread extirpation of this herbivore, and kelp forests have returned in some locations but, for the first time, these forests are devoid of vertebrate apex predators. In the western North Atlantic, large predatory crabs have recently filled this void and they have become the new apex predator in this system. Similar shifts from fish- to crab-dominance may have occurred in coastal zones of the United Kingdom and Japan, where large predatory finfish were extirpated long ago. Three North American case studies of kelp forests were examined to determine their long history with humans and project the status of future kelp forests to the year 2025. Fishing impacts on kelp forest systems have been both profound and much longer in duration than previously thought. Archaeological data suggest that coastal peoples exploited kelp forest organisms for thousands of years, occasionally resulting in localized losses of apex predators, outbreaks of sea urchin populations and probably small-scale deforestation. Over the past two centuries, commercial exploitation for export led to the extirpation of sea urchin predators, such as the sea otter in the North Pacific and predatory fishes like the cod in the North Atlantic. The largescale removal of predators for export markets increased sea urchin abundances and promoted the decline of kelp forests over vast areas. Despite southern California having one of the longest known associations with coastal kelp forests, widespread deforestation is rare. It is possible that functional redundancies among predators and herbivores make this most diverse system most stable. Such biodiverse kelp forests may also resist invasion from non-native species. In the species-depauperate western North Atlantic, introduced algal competitors carpet the benthos and threaten future kelp dominance. There, other non-native herbivores and predators have become established and dominant components of this system. Climate changes have had measurable impacts on kelp forest ecosystems and efforts to control the emission of greenhouse gasses should be a global priority. However, overfishing appears to be the greatest manageable threat to kelp forest ecosystems over the 2025 time horizon. Management should focus on minimizing fishing impacts and restoring populations of functionally important species in these systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Humans have reduced the abundance of many large marine vertebrates, including whales, large fish, and sharks, to only a small percentage of their pre-exploitation levels. Industrial fishing and whaling also tended to preferentially harvest the largest species and largest individuals within a population. We consider the consequences of removing these animals on the ocean's ability to store carbon. Methodology/Principal Findings: Because body size is critical to our arguments, our analysis focuses on populations of baleen whales. Using reconstructions of pre-whaling and modern abundances, we consider the impact of whaling on the amount of carbon stored in living whales and on the amount of carbon exported to the deep sea by sinking whale carcasses. Populations of large baleen whales now store 9.1 x 10(6) tons less carbon than before whaling. Some of the lost storage has been offset by increases in smaller competitors; however, due to the relative metabolic efficiency of larger organisms, a shift toward smaller animals could decrease the total community biomass by 30% or more. Because of their large size and few predators, whales and other large marine vertebrates can efficiently export carbon from the surface waters to the deep sea. We estimate that rebuilding whale populations would remove 1.6 x 10(5) tons of carbon each year through sinking whale carcasses. Conclusions/Significance: Even though fish and whales are only a small portion of the ocean's overall biomass, fishing and whaling have altered the ocean's ability to store and sequester carbon. Although these changes are small relative to the total ocean carbon sink, rebuilding populations of fish and whales would be comparable to other carbon management schemes, including ocean iron fertilization.