2 resultados para Pearl Harbor (Hawaii), Attack on, 1941.
em DigitalCommons - The University of Maine Research
Resumo:
The Princeton Ocean Model is used to study the circulation features in the Pearl River Estuary and their responses to tide, river discharge, wind, and heat flux in the winter dry and summer wet seasons. The model has an orthogonal curvilinear grid in the horizontal plane with variable spacing from 0.5 km in the estuary to 1 km on the shelf and 15 sigma levels in the vertical direction. The initial conditions and the subtidal open boundary forcing are obtained from an associated larger-scale model of the northern South China Sea. Buoyancy forcing uses the climatological monthly heat fluxes and river discharges, and both the climatological monthly wind and the realistic wind are used in the sensitivity experiments. The tidal forcing is represented by sinusoidal functions with the observed amplitudes and phases. In this paper, the simulated tide is first examined. The simulated seasonal distributions of the salinity, as well as the temporal variations of the salinity and velocity over a tidal cycle are described and then compared with the in situ survey data from July 1999 and January 2000. The model successfully reproduces the main hydrodynamic processes, such as the stratification, mixing, frontal dynamics, summer upwelling, two-layer gravitational circulation, etc., and the distributions of hydrodynamic parameters in the Pearl River Estuary and coastal waters for both the winter and the summer season.
Resumo:
The Princeton Ocean Model is used to study the circulation in the Pear River Estuary (PRE) and the adjacent coastal waters in the winter and summer seasons. Wong et al. [2003] compares the simulation results with the in situ measurements collected during the Pearl River Estuary Pollution Project (PREPP). In this paper, sensitivity experiments are carried out to examine the plume and the associated frontal dynamics in response to seasonal discharges and monsoon winds. During the winter, convergence between the seaward spreading plume water and the saline coastal water sets up a salinity front that aligns from the northeast to the southwest inside the PRE. During the summer the plume water fills the PRE at the surface and spreads eastward in the coastal waters in response to the prevailing southwesterly monsoon. The overall alignment of the plume is from the northwest to the southeast. The subsurface front is similar to that in the winter and summer except that the summer front is closer to the mouth and the winter front closer to the head of the estuary. Inside the PRE, bottom flows are always toward the head of the estuary, attributed to the density gradient associated with the plume front. In contrast, bottom flows in the shelf change from offshore in winter to onshore in summer, reflecting respectively the wintertime downwelling and summertime upwelling. Wind also plays an essential role in controlling the plume at the surface. An easterly wind drives the plume westward regardless winter or summer. The eastward spreading of the plume during the summer can be attributed to the southerly component of the wind. On the other hand, the surface area of the plume is positively proportional to the amount of discharge.