6 resultados para Over-Enforcement of Patents
em DigitalCommons - The University of Maine Research
Resumo:
We investigate causes of the stratigraphic variation revealed in a 177 km, 400 MHz short-pulse radar profile of firn from West Antarctica. The profile covers 56 m depth, and its direction was close to those of the ice flow and mean wind. The average, near-surface accumulation rates calculated from the time delays of one radar horizon consistently show minima on leeward slopes and maxima on windward slopes, confirming an earlier study based on stake observations. The stratigraphic variation includes up to 30 m depth variation in individual horizons over tens of km, fold limbs that become progressively steeper with depth, and fold-hinge loci that change direction or propagate down-ice with depth over distances far less than predicted by the ice speeds. We use an accumulation rate model to show how local rate anomalies and the effect of ice speed upon a periodic variation in accumulation rate cause these phenomena, and we reproduce two key features seen in the stratigraphic variations. We conclude that the model provides an explanation of changes in spatial stratigraphy and local measures of accumulation history given the constraints of surface topography, ice and wind velocities, and a general accumulation rate for an area.
Resumo:
We compare ICESat data (2003-2004) to airborne laser altimetry data (1997-98 and 1999-2000) to monitor surface changes over portions of Van der Veen (VdVIS), Whillans (WIS) and Kamb ice streams (KIS) in the Ross Embayment of the West Antarctic Ice Sheet. The spatial pattern of detected surface changes is generally consistent with earlier observations. However, important changes have occurred during the past decade. For example, areas on the VdVIS and WIS, where large thinning was detected by the airborne surveys, are now closer to being in balance. The upper trunk of KIS continues to build up with thickening rates reaching 0.4 m/year. Our results provide new evidence that the overall mass balance of the region is becoming more positive, but a significant spatial variability exists. They also demonstrate the potential of ICESat data for detecting spatial patterns of surface elevation change in Antarctica.
Resumo:
This paper reviews developments in our understanding of the state of the Antarctic and Southern Ocean climate and its relation to the global climate system over the last few millennia. Climate over this and earlier periods has not been stable, as evidenced by the occurrence of abrupt changes in atmospheric circulation and temperature recorded in Antarctic ice core proxies for past climate. Two of the most prominent abrupt climate change events are characterized by intensification of the circumpolar westerlies (also known as the Southern Annular Mode) between similar to 6000 and 5000 years ago and since 1200-1000 years ago. Following the last of these is a period of major trans-Antarctic reorganization of atmospheric circulation and temperature between A. D. 1700 and 1850. The two earlier Antarctic abrupt climate change events appear linked to but predate by several centuries even more abrupt climate change in the North Atlantic, and the end of the more recent event is coincident with reorganization of atmospheric circulation in the North Pacific. Improved understanding of such events and of the associations between abrupt climate change events recorded in both hemispheres is critical to predicting the impact and timing of future abrupt climate change events potentially forced by anthropogenic changes in greenhouse gases and aerosols. Special attention is given to the climate of the past 200 years, which was recorded by a network of recently available shallow firn cores, and to that of the past 50 years, which was monitored by the continuous instrumental record. Significant regional climate changes have taken place in the Antarctic during the past 50 years. Atmospheric temperatures have increased markedly over the Antarctic Peninsula, linked to nearby ocean warming and intensification of the circumpolar westerlies. Glaciers are retreating on the peninsula, in Patagonia, on the sub-Antarctic islands, and in West Antarctica adjacent to the peninsula. The penetration of marine air masses has become more pronounced over parts of West Antarctica. Above the surface, the Antarctic troposphere has warmed during winter while the stratosphere has cooled year-round. The upper kilometer of the circumpolar Southern Ocean has warmed, Antarctic Bottom Water across a wide sector off East Antarctica has freshened, and the densest bottom water in the Weddell Sea has warmed. In contrast to these regional climate changes, over most of Antarctica, near-surface temperature and snowfall have not increased significantly during at least the past 50 years, and proxy data suggest that the atmospheric circulation over the interior has remained in a similar state for at least the past 200 years. Furthermore, the total sea ice cover around Antarctica has exhibited no significant overall change since reliable satellite monitoring began in the late 1970s, despite large but compensating regional changes. The inhomogeneity of Antarctic climate in space and time implies that recent Antarctic climate changes are due on the one hand to a combination of strong multidecadal variability and anthropogenic effects and, as demonstrated by the paleoclimate record, on the other hand to multidecadal to millennial scale and longer natural variability forced through changes in orbital insolation, greenhouse gases, solar variability, ice dynamics, and aerosols. Model projections suggest that over the 21st century the Antarctic interior will warm by 3.4 degrees +/- 1 degrees C, and sea ice extent will decrease by similar to 30%. Ice sheet models are not yet adequate enough to answer pressing questins about the effect of projected warming on mass balance and sea level. Considering the potentially major impacts of a warming climate on Antarctica, vigorous efforts are needed to better understand all aspects of the highly coupled Antarctic climate system as well as its influence on the Earth's climate and oceans.
Resumo:
Peatlands deform elastically during precipitation cycles by small (+/- 3 cm) oscillations in surface elevation. In contrast, we used a Global Positioning System network to measure larger oscillations that exceeded 20 cm over periods of 4 - 12 hours during two seasonal droughts at a bog and fen site in northern Minnesota. The second summer drought also triggered 19 depressuring cycles in an overpressured stratum under the bog site. The synchronicity between the largest surface deformations and the depressuring cycles indicates that both phenomena are produced by the episodic release of large volumes of gas from deep semi-elastic compartments confined by dense wood layers. We calculate that the three largest surface deformations were associated with the release of 136 g CH4 m(-2), which exceeds by an order of magnitude the annual average chamber fluxes measured at this site. Ebullition of gas from the deep peat may therefore be a large and previously unrecognized source of radiocarbon depleted methane emissions from northern peatlands.
Resumo:
The daytime abundance and localized distribution of fishes in relation to temperature were studied in a small tidal cove by beach seining on seven dates in the Back River estuary, Maine, during the summers of 1971 and 1972. Temperatures on the seven dates ranged from 15.1–26.2 C, and salinities ranged from 17.3–24.7‰. Eighteen species of fishes were captured, with mummichogs, smooth flounders, Atlantic silversides and Atlantic herring together comprising over 98% of the catch. Mummichogs and Atlantic silversides were captured primarily near the inner end of the cove, while other abundant species were caught mainly at the outer end of the cove. Several species seem well adapted to naturally warm cove temperatures. Others seem now virtually excluded because of warm temperatures. Winter flounder, Atlantic herring, and Atlantic tomcod might be excluded from the cove during daytime in summer if artificial warming of the cove were permitted.
Resumo:
This work is aimed at improving our current knowledge of the non-enzymatic inecl~anisins involved in brown-rot decay, as well as the exploration of potential applications of a brown-rot mimetic model system in paper recycling processes. The study was divided into two parts. The first part focussed on the chemical mechanisms involved in chelation and reduction of iron by a low molecular weight chelator (isolated from the brown-rot fungus Gloeophyllz~m tmbeum) and its model compound 2,3- dihydroxybenzoic acid (2,3-DHBA). Chelation as well as free radical generation mediated by this system were studied by ESR measurement. The results indicate that the effects of the chelator/iron ratio, the pH, and other reaction parameters on hydroxyl radical generation by a Fenton type system could be determined using ESR spin-trapping techniques. The results also support the hypothesis that superoxide radicals are involved in the chelator-mediated Fenton process. In the second part of the study, the effect of a chelator-mediated Fenton system for the improvement of deinking efficiency and the n~odification of fiber and paper properties was studied. For the deinking study, copy paper was laser printed with an identical standard pattern. Then repulping and flotation operations were performed to remove ink particles. Under properly controlled deinking conditions, the chelator mediated treatment (CMT) resulted in a reduction in dirt count over that of conventional deinking procedures with no significant loss of pulp strength. To study the effect of the chelator system treatment on the quality of pulp with different fines content, a fully bleached hardwood kraft pulp was beaten to different freeness levels and treated with the chelator-mediated free radical system. The result shows that virgin fiber and heavily beaten fiber respond differently to the free radical treatment. Unbeaten fibers become more flexible and easier to collapse after free radical treatment, while beaten fibers show a reduction in fines and small materials after mild free radical treatment.