3 resultados para Oceanographic conditions

em DigitalCommons - The University of Maine Research


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The evolution of oceanographic conditions in the upwelling region off northern Chile (18 degrees-24 degrees S) between 1996 and 1998 (including the 1997-1998 El Niño) is presented using hydrographic measurements acquired on quarterly cruises of the Chilean Fisheries Institute, with sea surface temperature (SST), sea level, and wind speeds from Arica (18.5 degrees S), Iquique (20.5 degrees S), and Antofagasta (23.5 degrees S) and a time series of vertical temperature profiles off Iquique. Spatial patterns of sea surface temperature and salinity from May 1996 to March 1997 followed a normal seasonal progression, though conditions were anomalously cool and fresh. Starting in March 1997, positive anomalies in sea level and sea surface temperature propagated along the South American coast to 37 degrees S. Maximum sea level anomalies occurred in two peaks in May-July 1997 and October 1997 to February 1998, separated by a relaxation period. Maximum anomalies (2 degrees C and 0.1 practical salinity units (psu)) extended to 400 m in December 1997 within 50 km of the coast. March 1998 presented the largest surface anomalies (> 4 degrees C and 0.6 psu). Strong poleward flow (20-35 cm s(-1) ) occurred to 400 m or deeper during both sea level maxima and weaker (10 cm s(-1) ) equatorward flow followed each peak. By May 1998, SST had returned to the climatological mean, and flow was equatorward next to the coast. However, offshore salinity remained anomalously high owing to a tongue of subtropical water extending southeast along the Peruvian coast. Conditions off northern Chile returned to normal between August and December 1998. The timing of the anomalies suggests a connection to equatorial waves. The progression of the 1997-1998 El Niño was very similar to that of 1982-1983, though with different timing with respect to seasons.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present the evolution of oceanographic conditions off the western coast of South America between 1996 and 1999, including the cold periods of 1996 and 1998-1999 and the 1997-1998 El Niño, using satellite observations of sea level, winds, sea surface temperature (SST), and chlorophyll concentration. Following a period of cold SST and low sea levels in 1996, both were anomalously high between March 1997 and May 1998. The anomalies were greatest between 5 degrees S and 15 degrees S, although they extended beyond 40 degrees S. Two distinct peaks in sea level and SST occurred in June-July 1997 and December 1997 to January 1998, separated by a relaxation period (August-November) of weaker anomalies. Satellite winds were upwelling favorable throughout the time period for most of the region and in fact increased between November 1997 and March 1998 between 5 degrees S and 25 degrees S. Satellite-derived chlorophyll concentrations are available for November 1996 to June 1997 (Ocean Color and Temperature Sensor (OCTS)) and then from October 1997 to present (Sea-viewing Wide Field-of-view Sensor (SeaWiFS)). Near-surface chlorophyll concentrations fell from May to June 1997 and from December 1997 to March 1998. The decrease was more pronounced in northern Chile than off the coast of Peru or central Chile and was stronger for larger cross-shelf averaging bins since nearshore concentrations remained relatively high.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abundance of the Ommastrephes bartramii winter-spring cohort fluctuated greatly from 1995 to 2004. To understand how abundance was influenced by sea surface conditions, we examined the variations in the proportion of thermal habitats with favourable sea surface temperature (SST). The SST data of both the spawning and feeding grounds were used to calculate the monthly proportion of favourable-SST areas (PFSSTA). Catch per fishing day per fishing boat (catch per unit effort, CPUE) of the Chinese mainland squid-jigging fleet was used as squid abundance index. The relationships between CPUE and monthly PFSSTA at spawning and feeding grounds were analyzed, and the relationship between CPUE and selected PFSSTA was quantified with a multiple linear regression model. Results showed that February PFSSTA at the spawning ground and August to November PFSSTA at the feeding ground could account for about 60% of the variability in O. bartramii abundance between 1995 and 2004, that February was the most important period influencing squid recruitment during the spawning season, and that feeding ground PFSSTA during the fishing season would influence CPUE by causing squid to aggregate. Our forecast model was found to perform well when we compared the model-predicted CPUEs and the average CPUEs observed during August to November in 2005 and 2006 from the Chinese squid-jigging fishery.