8 resultados para Nushagak, Alaska

em DigitalCommons - The University of Maine Research


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Samples were collected from a snow pit and shallow urn core near Kahiltna Pass (2970 m a.s.l.), Denali National Park, Alaska, USA, in May 2008. The record spans autumn 2003 to spring 2008 and reveals clusters of ice layers interpreted as summertime intervals of above-freezing temperatures. High correlation coefficients (0.75-1.00) between annual ice-layer thickness and regional summertime station temperatures for 4 years (n=4) indicate ice-layer thickness is a good proxy for mean and extreme summertime temperatures across Alaska, at least over the short period of record. A Rex-block (aka high-over-low) pattern, a downstream trough over Hudson Bay, Canada, and an upstream trough over eastern Siberia occurred during the three melting events that lasted at least 2 weeks. About half of all shorter melting events were associated with a cut-off low traversing the Gulf of Alaska. We hypothesize that a surface-to-bedrock core extracted from this location would provide a high-quality record of summer temperature and atmospheric blocking variability for the last several hundred years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new species of Cladorhizidac, front the Aleutian Islands is described and compared with all known species of Cladorhizza worldwide. Cladorhiza corona sp. now has a unique growth form with two planes of differently shaped appendages. Appendages are Inserted directly at the stalk; a spherical or conical body at the stalk is lacking. It is the only species reported where different spicule types occur in three morphologically different areas of the sponge. The spiculation of the basal plate is characterized by the occurrence of short, thick anisoxcas and the lack of anisochelae. Anisochelac arc found in the stalk and the basal appendages only. Flattened sigmancistras and (sub-)tylostyles are restricted to the crown. The arrangement of spicules is different in the basal plate, the stalk with the basal appendages, and in the distal append ages. The dimensions and combination of spicule types separate C. corona sp. nov. from all known members of the genus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arctic Ocean freshening can exert a controlling influence on global climate, triggering strong feedbacks on ocean-atmospheric processes and affecting the global cycling of the world's oceans. Glacier-fed ocean currents such as the Alaska Coastal Current are important sources of freshwater for the Bering Sea shelf, and may also influence the Arctic Ocean freshwater budget. Instrumental data indicate a multiyear freshening episode of the Alaska Coastal Current in the early 21st century. It is uncertain whether this freshening is part of natural multidecadal climate variability or a unique feature of anthropogenically induced warming. In order to answer this, a better understanding of past variations in the Alaska Coastal Current is needed. However, continuous long-term high-resolution observations of the Alaska Coastal Current have only been available for the last 2 decades. In this study, specimens of the long-lived crustose coralline alga Clathromorphum nereostratum were collected within the pathway of the Alaska Coastal Current and utilized as archives of past temperature and salinity. Results indicate that coralline algal Mg/Ca ratios provide a 60 year record of sea surface temperatures and track changes of the Pacific Decadal Oscillation, a pattern of decadal-to-multidecadal ocean-atmosphere climate variability centered over the North Pacific. Algal Ba/Ca ratios (used as indicators of coastal freshwater runoff) are inversely correlated to instrumentally measured Alaska Coastal Current salinity and record the period of freshening from 2001 to 2006. Similar multiyear freshening events are not evident in the earlier portion of the 60 year Ba/Ca record. This suggests that the 21st century freshening of the Alaska Coastal Current is a unique feature related to increasing glacial melt and precipitation on mainland Alaska.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We previously reported a record of regionally significant volcanic eruptions in the North Pacific using an ice core from Eclipse Icefield (St. Elias Mountains, Yukon, Canada). The acquisition of two new ice cores from Eclipse Icefield, along with the previously available Eclipse Icefield and Mount Logan Northwest Col ice cores, allows us to extend our record of North Pacific volcanism to 550 years before present using a suite of four ice cores spanning an elevation range of 3 - 5 km. Comparison of volcanic sulfate flux records demonstrates that the results are highly reproducible, especially for the largest eruptions such as Katmai ( A. D. 1912). Correlation of volcanic sulfate signals with historically documented eruptions indicates that at least one-third of the eruptions recorded in St. Elias ice cores are from Alaskan and Kamchatkan volcanoes. Although there are several moderately large ( volcanic explosivity index (VEI) >= 4) eruptions recorded in only one core from Eclipse Icefield, the use of multiple cores provides signals in at least one core from all known VEI >= 4 eruptions in Alaska and Kamchatka since A. D. 1829. Tephrochronological evidence from the Eclipse ice cores documents eruptions in Alaska (Westdahl, Redoubt, Trident, and Katmai), Kamchatka (Avachinsky, Kliuchevoskoi, and Ksudach), and Iceland (Hekla). Several unidentified tephra-bearing horizons, with available geochemical evidence suggesting Alaskan and Kamchatkan sources, were also found. We present a reconstruction of annual volcanic sulfate loading for the North Pacific troposphere based on our ice core data, and we provide a detailed assessment of the atmospheric and climatic effects of the Katmai eruption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three-dimensional numerical models are used to investigate the mechanical evolution of the southern Alaskan plate corner where the Yakutat and the Pacific plates converge on the North American plate. The evolving model plate boundary consists of Convergent, Lateral, and Subduction subboundaries with flow separation of incoming material into upward or downward trajectories forming dual, nonlinear advective thermal/mechanical anomalies that fix the position of major subaerial mountain belts. The model convergent subboundary evolves into two teleconnected orogens: Inlet and Outlet orogens form at locations that correspond with the St. Elias and the Central Alaska Range, respectively, linked to the East by the Lateral boundary. Basins form parallel to the orogens in response to the downward component of velocity associated with subduction. Strain along the Lateral subboundary varies as a function of orogen rheology and magnitude and distribution of erosion. Strain-dependent shear resistance of the plate boundary associated with the shallow subduction zone controls the position of the Inlet orogen. The linkages among these plate boundaries display maximum shear strain rates in the horizontal and vertical planes where the Lateral subboundary joins the Inlet and Outlet orogens. The location of the strain maxima shifts with time as the separation of the Inlet and Outlet orogens increases. The spatiotemporal predictions of the model are consistent with observed exhumation histories deduced from thermochronology, as well as stratigraphic studies of synorogenic deposits. In addition, the complex structural evolution of the St Elias region is broadly consistent with the predicted strain field evolution. Citation: Koons, P. O., B. P. Hooks, T. Pavlis, P. Upton, and A. D. Barker (2010), Three-dimensional mechanics of Yakutat convergence in the southern Alaskan plate corner, Tectonics, 29, TC4008, doi: 10.1029/2009TC002463.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optimized regional climate simulations are conducted using the Polar MM5, a version of the fifth-generation Pennsylvania State University-NCAR Mesoscale Model (MM5), with a 60-km horizontal resolution domain over North America during the Last Glacial Maximum (LGM, 21 000 calendar years ago), when much of the continent was covered by the Laurentide Ice Sheet (LIS). The objective is to describe the LGM annual cycle at high spatial resolution with an emphasis on the winter atmospheric circulation. Output from a tailored NCAR Community Climate Model version 3 (CCM3) simulation of the LGM climate is used to provide the initial and lateral boundary conditions for Polar MM5. LGM boundary conditions include continental ice sheets, appropriate orbital forcing, reduced CO2 concentration, paleovegetation, modified sea surface temperatures, and lowered sea level. Polar MM5 produces a substantially different atmospheric response to the LGM boundary conditions than CCM3 and other recent GCM simulations. In particular, from November to April the upper-level flow is split around a blocking anticyclone over the LIS, with a northern branch over the Canadian Arctic and a southern branch impacting southern North America. The split flow pattern is most pronounced in January and transitions into a single, consolidated jet stream that migrates northward over the LIS during summer. Sensitivity experiments indicate that the winter split flow in Polar MM5 is primarily due to mechanical forcing by LIS, although model physics and resolution also contribute to the simulated flow configuration. Polar MM5 LGM results are generally consistent with proxy climate estimates in the western United States, Alaska, and the Canadian Arctic and may help resolve some long-standing discrepancies between proxy data and previous simulations of the LGM climate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A basin-wide interdecadal change in both the physical state and the ecology of the North Pacific occurred near the end of 1976. Here we use a physical-ecosystem model to examine whether changes in the physical environment associated with the 1976-1977 transition influenced the lower trophic levels of the food web and if so by what means. The physical component is an ocean general circulation model, while the biological component contains 10 compartments: two phytoplankton, two zooplankton, two detritus pools, nitrate, ammonium, silicate, and carbon dioxide. The model is forced with observed atmospheric fields during 1960-1999. During spring, there is a similar to 40% reduction in plankton biomass in all four plankton groups during 1977-1988 relative to 1970-1976 in the central Gulf of Alaska (GOA). The epoch difference in plankton appears to be controlled by the mixed layer depth. Enhanced Ekman pumping after 1976 caused the halocline to shoal, and thus the mixed layer depth, which extends to the top of the halocline in late winter, did not penetrate as deep in the central GOA. As a result, more phytoplankton remained in the euphotic zone, and phytoplankton biomass began to increase earlier in the year after the 1976 transition. Zooplankton biomass also increased, but then grazing pressure led to a strong decrease in phytoplankton by April followed by a drop in zooplankton by May: Essentially, the mean seasonal cycle of plankton biomass was shifted earlier in the year. As the seasonal cycle progressed, the difference in plankton concentrations between epochs reversed sign again, leading to slightly greater zooplankton biomass during summer in the later epoch.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kelp forests are phyletically diverse, structurally complex and highly productive components of cold-water rocky marine coastlines. This paper reviews the conditions in which kelp forests develop globally and where, why and at what rate they become deforested. The ecology and long archaeological history of kelp forests are examined through case studies from southern California, the Aleutian Islands and the western North Atlantic, well-studied locations that represent the widest possible range in kelp forest biodiversity. Global distribution of kelp forests is physiologically constrained by light at high latitudes and by nutrients, warm temperatures and other macrophytes at low latitudes. Within mid-latitude belts (roughly 40-60degrees latitude in both hemispheres) well-developed kelp forests are most threatened by herbivory, usually from sea urchins. Overfishing and extirpation of highly valued vertebrate apex predators often triggered herbivore population increases, leading to widespread kelp deforestation. Such deforestations have the most profound and lasting impacts on species-depauperate systems, such as those in Alaska and the western North Atlantic. Globally urchin-induced deforestation has been increasing over the past 2-3 decades. Continued fishing down of coastal food webs has resulted in shifting harvesting targets from apex predators to their invertebrate prey, including kelp-grazing herbivores. The recent global expansion of sea urchin harvesting has led to the widespread extirpation of this herbivore, and kelp forests have returned in some locations but, for the first time, these forests are devoid of vertebrate apex predators. In the western North Atlantic, large predatory crabs have recently filled this void and they have become the new apex predator in this system. Similar shifts from fish- to crab-dominance may have occurred in coastal zones of the United Kingdom and Japan, where large predatory finfish were extirpated long ago. Three North American case studies of kelp forests were examined to determine their long history with humans and project the status of future kelp forests to the year 2025. Fishing impacts on kelp forest systems have been both profound and much longer in duration than previously thought. Archaeological data suggest that coastal peoples exploited kelp forest organisms for thousands of years, occasionally resulting in localized losses of apex predators, outbreaks of sea urchin populations and probably small-scale deforestation. Over the past two centuries, commercial exploitation for export led to the extirpation of sea urchin predators, such as the sea otter in the North Pacific and predatory fishes like the cod in the North Atlantic. The largescale removal of predators for export markets increased sea urchin abundances and promoted the decline of kelp forests over vast areas. Despite southern California having one of the longest known associations with coastal kelp forests, widespread deforestation is rare. It is possible that functional redundancies among predators and herbivores make this most diverse system most stable. Such biodiverse kelp forests may also resist invasion from non-native species. In the species-depauperate western North Atlantic, introduced algal competitors carpet the benthos and threaten future kelp dominance. There, other non-native herbivores and predators have become established and dominant components of this system. Climate changes have had measurable impacts on kelp forest ecosystems and efforts to control the emission of greenhouse gasses should be a global priority. However, overfishing appears to be the greatest manageable threat to kelp forest ecosystems over the 2025 time horizon. Management should focus on minimizing fishing impacts and restoring populations of functionally important species in these systems.