2 resultados para Nursery schools.
em DigitalCommons - The University of Maine Research
Resumo:
We have identified benthic recruitment habitats and nursery grounds of the American lobster Homarus americanus Milne Edwards in the coastal Gulf of Maine, USA, by systematically censusing subtidal sediment, cobble, and ledge substrata. We distinguish lobsters between settlement size (5 mm carapace length (CL) to ca 40 mm CL as the 'early benthic phase' (EBP) because they are ecologically and behaviorally distinct from larger lobsters. EBP lobsters are cryptic and apparently restricted to shelter-providing habitats (primarily cobble substratum) in coastal Gulf of Maine. In these habitats we found average population densities of EBP lobsters as high as 6.9 m-2. EBP lobsters were virtually absent from ledge and sedimentary substrata devoid of vegetation although larger lobsters are commonly found there. It is possible that the requirement for shelter-providing substrata by this life phase creates a natural demographic 'bottleneck' to benthic recruitment for the species. Prime cobble recruitment habitat is relatively rare and comprises ca 11 % of the 60.2 km of shoreline at our study area in midcoast Maine. If this low availability of cobble exists throughout the Gulf of Maine, as other studies indicate, it could limit lobster production potential. We verified the geographic extent of recruitment to cobble habitats censused in 3 of 4 regions spanning ca 300 km of the coastal Gulf of Maine (from Nahant, Massachusetts to Swans Island, Maine). Early benthic phase lobsters were absent from cobble censused in the northeastern extreme of our survey (Swans Island). This pattern is consistent with earlier speculation that relatively cool water temperatures may limit larval settlement in this region.
Resumo:
The transfer coefficient of radon from water to air was investigated in schools. Kitchens, bathrooms and locker rooms were studied for seven schools in Maine. Simulations were done in water-use rooms where radon in air detectors were in place. Quantities measured were radon in water (270-24500 F) and air (0-80 q), volume of water used, emissivities (0.01-0.99) and ventilation rates (0.012-0.066A). Variation throughout the room of the radon concentration was found. Values calculated for the transfer coefficient for kitchens and baths were ranged from 9.6 x to 2.0 x The transfer coefficient was calculated using these parameters and was also measured using concentrations of radon in water and air. This provides a means by which radon in air can be estimated using the transfer coefficient and the concentration in the water in other schools and it can be used to estimate the dose caused by radon released from water use. This project was partially funded by the United States Environmental Protection Agency (grant #X828l2 101-0) and by the State of Maine (grant #10A500178). These are the first measurements of this type to be done in schools in the United States.